Category Archives: Guidelines

Is the Cheapest Medication the Best for YOU? Or is the Best Medication Cheaper in the Long Run?

kidney cancer

Imagine hearing from your doctor that you must, “Fail first on this cheaper drug. Then I can prescribe a carefully chosen treatment.”

In January of 2019, new Medicare Advantage prescription rules change. Cleverly called “step therapy”, this is a step backwards for our RCC friends with MA plans, undermines the autonomy of doctors, limits timely access to approved medications and may shorten lives of patients given ineffective medication.

“Step therapy” takes treatment recommendations from the doctor and gives it to the bookkeepers looking for savings first. Benefit to patients is likely delayed, while the cancer grows.

With our multiple tumor types, not every medication is right for every patient, their side effects and stage. “Step therapy” is threat to basic and effective care and life-threatening for some.

Before getting the drug thought best for him, the patient must “fail first” before he can “step” to the next. What consitutes a failure?Lack of response, toxicity at a certain level, growth of more mets, and over what period of time? When can the patient go to the more effective drug?

In the long run, this may all Medicare patients, and all insured patients We cannot let this rule stand.

KCCure, on whose board I serve as a Patient Advisor  is one of 239 different organizations which is sending a letter to CMS–the Medicare agency–to protest the change and to explain its impact on us. ( Check www.kccure.org for lots of valuable information on kidney cancer issues.)

Do be aware that you can help by contacting your federal reps, to let them know how dangerous this change can be for all of us. Be prepared to explain that not every patient is the same, nor is every medication. Take a stand for yourself and your fellow patients.

Leave a Comment

Filed under FDA Medications, FDA Meds & Trials, Guidelines, Patient Activism, Patient Engagement, Therapies

ABSTRACT from ASCO & Impact for Patients: “Alterations in key clear cell renal cell carcinoma (RCC) genes to refine patient prognosis”

This abstract title reflects important changes about kidney cancer. It is not about “kidney cancer”, but clear cell RCC, with a  focus on changes or genomic alterations (GAs) in the genes.  The study goal was to see if patient the prognosis related to those GAs in genes that are found in RCC.  It describes ccRCC in a very detailed way–as to its gene expressions/changes.  (Abstract and Take-Home messages from Dr. Monty Pal are found below, with my comments to follow.

Session: Genitourinary (Nonprostate) Cancer Saturday June 2, 8:00 AM–11:30 AM
4516 (http://abstracts.asco.org/214/AbstView_214_229517.html) Alterations in key clear
cell renal cell carcinoma (RCC) genes to refine patient prognosis.

D Bossé, W Xie, Y Ged,et al
Take-Home Message
In this study of 308 patients with clear cell mRCC treated with VEGF-TKI therapy in the
first line, the researchers wanted to determine the prognostic value of genomic
alterations leading to loss of function. Genomic alterations in BAP1 were significantly
associated with a worse IMDC risk group and worse overall survival. Longer overall
survival was significantly associated with genomic alterations in KDM5C and PBRM1.
Significantly worse overall survival was reported in IMDC intermediate–risk patients
with PBRM wild-type tumors that also harbored genomic alterations in BAP1.
The researchers suggest that genomic alteration assessment may be predictive of
survival in IMDC intermediate–risk patients.

A prognostic study is about the likely progression of the disease, and the related risk factors.  With a more precise diagnosis of the disease, the prognosis will be better understood, which should guide treatments accordingly. (Sad that we still need prognostic studies vs comparative effectiveness studies!)

But first, a quick lecture on the background issues…

Patients might never know if their RCC subtype is clear cell (ccRCC),  papillary (pRCC) or chromophobe RCC (chRCC) until their tumor cells are seen under a microscope.  Until recently, most metastatic RCCs were treated similarly. Treatment was limited at best, with few options beyond surgery. When RCCs had spread, even surgery was not always recommended.  Diagnosis occurred when a mass was found, often fairly large, with about 1/3 of patients having metastatic disease.

It was wrongly assumed was that very small tumors  carried little risk, that they could not grow quickly and were unlikely to spread malignant cells. They could be ‘watched’. If removed surgically or ablated with radiation, there would be no real risk of spread and the patient needed no follow up treatment.

However, some small tumors are aggressive, grow quickly and spread to other organs. Surgery will not ‘get it all’, as the spread can occur well before the discovery of the mass. In addition, a “small” kidney tumor can be up to 7cm (2 3/4″) in size and have had years of silent growth.

Why do these tumors act so differently?  They arise from a mix of genomic changes in the kidney cells. Genomic alterations (GAs) vary in ccRCC patients, and those variations were thought to reveal aggressiveness and impact patient outcomes.

Earlier researchers found they could group ccRCC patients into categories based on the molecular characteristics of their tumors.  Those newly defined patient/tumor groups had every different Overall Survival (OS) statistics.  One subgroup had more aggressive disease, with OS of 2.5 years, while others had OS of over 8 years.  The more aggressive tumors needed to be identified and treated more appropriately. This abstract gives greater insight into those defining characteristics and the drivers of growth of those tumors.

Back to GAs–genomic alterations, or mutations/changes. Cells can change or mutate, due to age,  to family tendencies, or to environmental causes.  Cancer cells don’t follow the rules of normal growth, possibly due to these previously unrecognized GAs in the genes.  Most mutations in our genes do not cause problems, but some GAs in some genes drive tumor growth that endanger lives.

These genes –VHL, PBRM1, BAP1, TP53 and KDM5C–are often found in metastatic RCC. Each gene may have different GAs and at different frequencies.  Those characteristics define the tumor more carefully, and create greater risk of aggressive disease.  The abstract reviews the GAs and survival statistics in the patient population.

This is a study of 308  patients with metastaticRCC, previously treated with tyrosine kinsase inhibitors (TKIs), such as  Sutent and Votrient.  The patients were  grouped into ‘favorable’, ‘intermediate’ or ‘poor’ risk groups, a reflection of disease impact.  Their tumors were sequenced for GAs in the named genes.  Tumors have varying degrees of GAs within those genes, so were examined by those GAs and combinations of GAs. Then those GAs were compared with patient risks and their outcomes.

Those patients with GAs in the genes BAP1 and PBRM1 wt  had the worse OS.  Patients with GAs in the BAP1 gene had poorer survival, even if they were in the intermediate risk group.   The presence of GAs in three genes, VHL, TP53 and KCM5C did not seem to play a negative role in outome.  Indeed, the GAs with KDM5C seemed to improve OS stats.

What does this mean for the current patient with  metastatic ccRCC?  Perhaps a genomic analysis will give some guidance as to the aggressiveness of the disease, or reassurance that there to watch a tumor and decide the next step.  If the patient has alterations in BAP1 and PBRM1, which is associated with greater risk, he will need more aggressive care.

This information does not tell patients and doctors what treatment to use.  It does demonstrate the value of having one’s tumor sequenced to see the GAs, and help judge risk.  Those patients most at risk of aggressive disease may benefit from earlier treatment and  increased monitoring. Since about one-third of all patients not metastatic at diagnosis will indeed develop metastases, so that sequencing to discover these GAs would be a consideration for all.

This abstract gives a picture of the prognosis for the group of mRCC patients–not of any single patient–who have these gene alterations in theor tumors.  Other details will be found inthe complete study.  There may be comparisons as to how long the patients had been ill before diagnosis, the time until emergence of metastases, the length of time until TKI treatment, the length of response to the TKIs and time, if any, without treatment post the TKI until the sequencing.  There is no similar comparison to patients who were not treated at all, or who were treated with other agents.  The abstract does report a meaningful way to judge risk for patients with metastatic RCC with the use of gene sequencing, and that alone, can have impact on treatment decisions.

 

Leave a Comment

Filed under genomics, Genomics & Genes, Guidelines, Medical Conferences, Uncategorized

“Predicting Short Survival” article: A Self-fulfilling Prophecy for the Newly Diagnosed

I thought I had seen enough articles which concentrated on the stats of how poorly kidney cancer patients did, but then, this one came along from Norway.  “A Three-Variable Model Predicts Short Survival in Patients with Newly Diagnosed Metastatic Renal Cell Carcinoma”, just published in 2017, it is shocking and may create barriers to proper care for patients.  The title might have been more accurately titled something like, “How We Fail to Find Kidney Cancer, Therefore Dooming Many to an Unnecessarily Efficient Death”.

Maybe it especially bothers me, in that I have come to expect more of the several Scandinavian health system as I understood them. Also, that I am 1/4 Norwegian, it seems a personal affront.  To lay the ground work, I shall remind you that kidney cancer is often found in the ‘6th” decade of life, or in the 50s, 60s and 70s, most often.  (Any earlier, and there might be a genetic problem, by the way.)  But it is also slow-growing, often can do so without many overt symptoms, but there are often hints.  Of course, if you do not look for those symptoms and search out those causes, you get that slow-growing cancer to establish itself quite thoroughly!  You know the rest of the story, no doubt.

The facts are as follows.  Norway is generally sparsely populated, having about 5.2 million people, with an aging populations, with about 11% over age 70 at present.  There were about 814 cases of kidney cancer in 2014, and more to more, per the stats.  The background statement of the above study notes that it is “important to have realistic perspectives, especially if the expected prognosis is very unfavorable”.  Already I am wondering how expectations by the doctors affect the care they are about to give the newly diagnosed.

In one small area of Norway, Norland data was collected about all newly diagnosed patients, with the stated concern that in trying to select the “best treatment option for an individual, the poor prognosis groups is the most challenging one because aggressive approaches may result in serious side effects in these often frail patients.”  Thus, the researchers wanted to find out how those patients treated within the national guidelines failed.

A central measure of their expectations–no doubt built on the previous years’ patient responses–was the definition of “short survival”, i.e., after the initial diagnosis.  Short survival was for 3.5 months or less…yet the concern from above is in regard to the ‘serious side effects’ in these patients.  Dying within 3.5 months of diagnosis in a modern health care system seems a pretty serious side effect as well!  In this small area there were 48 patients identified in this recent study, 10 of whom died within 3,5 months.  Those 38 patients who lived four months or longer were deemed to have had long survival.  Obviously those patient who were doing badly at the time of diagnosis seemed to die  more quickly.  This seems at odds with the American experience, with much long general overall survival, but it is hard to get those stats, as the US measurements are in terms of YEARS of survival.  A metastatic kidney cancer patient is a Stage IV patient, with the 5 YEAR survival at 8%, per the American Cancer Society–whose stats are necessarily behind the times.  They modify that to note that low-risk patients have a 41% survival rate, intermediate risk patients have a 18% survival rate, and the high-risk patients have the 8% survival rate at five years.

Why such a difference?  The disease is similarly divided 2 to 1, male to female, and there is a near-similar mix of subtypes, such as clear cell, papillary and chromophobe.  The median age at time of diagnosis is 68, slightly higher than in the US. However, in the US, only about 30% of patients are found to be metastatic at time of diagnosis, but in this small study, 70% were found to be with metastatic disease upon diagnosis or within 3 month of that time.  Most important is to note that only 65% of patients in this study were given a nephrectomy, either full or partial.  And post diagnosis, only about 56% of those patients received any systemic treatment.

That seems enough to tell me that these patients were treated very differently that most US patients in terms of surgery, but other statistics were striking. Though the 60-69 age group represented 58% of the patients, only 3.3% were found under 60 years of age.  Was nobody looking for cancer in this group? Imaging for other diseases often reveals kidney cancer, so the 3.3% seemed off the statistical mark.

Only 30% were found to be in ECOG Performance status 0-1, with 70% already struggling with the effects of their disease. Another measure indicates that only 18% had good performance status.  This causes me to wonder how long those patients struggled as well to get a necessary imaging study to verify the presence of a kidney tumor.  (Only 65% of those got the darn things removed!)

Over 55% of all these patients had low hemoglobin, one of the simplest measures found in every blood test.  A pretty good clue that something very fundamental was amiss with these patients. In the group who died within the ‘short survival’ period of  three months, 50% of them had SKIN metastases.  Again, a very visible symptom, and hard to ignore when found with the low hemoglobin.

So how did they do in terms of median Overall Survival?  That was only 13.2 months, and with a 2 year survival rate of 40%.

Perhaps late to be diagnosed, with far fewer nephrectomies than in the US, and with far fewer systemic therapies applied post the time of diagnosis–no wonder the outcomes are so poor! Does this influence the doctor as he diagnoses a patient with low hemoglobin and some odd skin manifestations.  Does he recommend a nephrectomy–and how long does it take to get into such a surgery?  Does the likelihood of a poor outcome prevent the doctor from taking a more aggressive approach, not to recommend any systemic treatment for 43% of those patients? Does he just assume the patient will succumb very quickly to the disease!  Does that create the poorer outcomes in these patients?

A self-fulfilling prophecy is oddly reassuring to the party who makes the prediction, as he unwittingly works to make that prophecy come true.  Poor expectations for survival may well lead to that very outcome.  Wish it were otherwise.

 

 

 

2 Comments

Filed under Guidelines, Newly Diagnosed, Surgery

Kidney Tumors & Diagnosis? Size Matters–Big Surprise

Kidney cancer is generally a very silent disease. It is sneaky, hides out for years, and is often assumed to be something else.  In my case, my doctor essentially decided I was just a menopausal women with the ever-popular “stress” as a an extra.  The stress of carrying about a 10 cm tumor and wasting away  was probably part of it.

That slow diagnosis, often delayed for years is far too typical.  Only the greater use of CT scans has been significant in finding kidney cancer at an early stage. And just what is early or small? Looking for a cracked rib, or the dislocated shoulder has often revealed kidney cancer, and in the case of the shoulder, lung mets.  And then the hunt is on!  By the time this diagnosis is made, nearly 30-40% of kidney cancer is already metastatic.

The ‘classic triad’ of symptoms, are 1) blood in the urine, 2) flank pain, and 3) palpable mass in the abdomen. There are doctors who will consider kidney cancer only when the patient has these three symptoms, but that happens in fewer than 10% of patients.  The cancer has to be pretty far along to be found this way.  Meeting a pair of new doctors who were aware of my kidney cancer, they were obviously bewildered to hear that I had had none of the these symptoms.  “But those are the usual symptoms,” one said.  Maybe ‘classical’, but not ‘usual’.  Unfortunately that expectation is a barrier to good diagnosis.

Beyond the diagnosis and the staging of the disease is the pretty obvious question of what to do next. (Staging: another of those words used one way in English, and quite another in medicine No wonder we are confused.)  Getting treatment is derived from that ‘staging’.  To be told your cancer is at Stage I seems the only  bright spot of a cancer diagnosis,  but not so reassuring with kidney cancer.  The  “SMALL” Stage I kidney tumor is one which is confined to the kidney (good news) and is 7 centimeters or less.  Maybe Europeans react with the required, “Yipes!”, but few Americans would until they know that this is almost 3 inches in size!

Ain’t so small in my world, or in my kidney!, or anywhere else. In my previously-naive patient world, I thought a ‘small’ tumor was the size of a pea, or maybe a peanut.  In any case, these so-called small tumor are Stage I, of four Stages.  Don’t even ask about Stage V.  Calling a near-three inch tumor small reflects the history of many very large tumors being found in the early days.  Even in 1997 there was discussion about whether a 5cm (2 inch) tumor should be the ‘small’, and in the 1987 system, it had to be 2.5cm to be small, ie, about one inch a T1 stage.  I do not understand why this basic staging was so dramatically changed, but it may well be that there were so few truly small tumors found in this early CT era.

In any case, we now have a system which lumps all tumors 7 cm or smaller into TI category, re-divided into T1a if under 4cm, and T1b, up to 7cms.  This minimizes the sense of risk that comes with these larger Stage I tumors, despite clear evidence of much greater risk at about as they grow.  That shift to a more aggressive tumor, capable of having metastatic potential, seems to start just over 1 inch, about 2.8cm.  There is a measurable increase in risk of about 62% at this size, so waiting around for a mass to be palpable (ie, it can be felt) puts us all at risk.  And of course, that metastatic potential has likely started even earlier, prepping the body to accept new cancer in new locations.

Thus, the absolute need to monitor patients who have had large ‘small’ tumors far more carefully and for a longer time.  The reality is that even truly small tumors have the ability to start the metastatic process.  Tiny and invisible even to a CT, they can grow unnoticed for several years.  There is no magic ‘five years/safe at home’ for kidney cancer patients, sad to say.

So, if your doctor tells you not to worry, that he got it all, that it was small, that there is no need for further monitoring, you might just find another doctor who keeps up with the kidney cancer literature.  If you got this far with this post, you may be ahead of your doctor.

Re the above risk stats, seehttp://www.cancertherapyadvisor.com/renal-cell-carcinoma/renal-cell-carcinoma-larger-tumors-high-grade-pathology/article/415189/

22 Comments

Filed under Guidelines, Newly Diagnosed, Patient Engagement, Patient Resources, RCC Basics, Uncategorized, Your Role

Oligometastases?! Patients Changing the Rules

Kidney cancer is the focus here, but I can’t resist writing about the empowered and determined lung cancer patients who changed the rules–the NCCN guidelines–in treating their  cancer.  With this, there is  support for treatment for their newly established metastases which was previously lacking.  Translation for the patient was, “It’s come back, so just go home. End of story.”

What does this mean for kidney cancer patients, or for others?  For that matter what does “oligometastases” mean anyway?

” Oligometastases are defined as 1–5 distant metastases that can be treated by local therapy to achieve long-term survival or cure.”

Earlier, some doctors felt that there was no reason to treat a patient who was initially diagnosed with metastatic disease.  If the cancer had already metastasized, nothing that could be done, not even the removal of the primary tumor.  Oddly enough, patients often got no treatment and the self-fulfilling prophecy worked again.

We kidney cancer patients know better. (My 10cm tumor and the lungs full of mets would have NOT been treated by many doctors.)  Removal of the primary tumor can have real benefit, even when there is no treatment for the metastases.

Similarly, the emergence of mets post-surgery was also seen as a “game over” by many doctors.  The “got it all” surgery that was welcome news was suddenly a forgotten phrase. How many sad visits a year or two after of misplaced confidence? Kidney cancer will come back far too often, suddenly emerging near the old tumor or in some of the favored spots.  With kidney cancer, that is the lungs, bones, adrenal gland and the brain.

These new mets, generally in the area of the primary, are those oligomets.  Hard enough to say, and harder yet to be told that the docs will do nothing–because the guidelines say it is not worth it.  That was the situation for non-small cell lung cancer patients with new mets.

But these cancer patients were NOT having that kind of non-help!

They gathered all the data, showed the value of going after these mets and convinced the NCCN to make significant changes in their guidelines.  Now doctors and the insurance people cannot deny these treatments on the basis of these guidelines.

Patients helping patients, patients helping doctors, patients helping create better guidelines, patients living longer…might be a trend we can emulate.

LITTLE BACKGROUND:

Keep in mind that most doctors and insurance companies want to use treatment guidelines based on some acceptable medical standards.  One guideline comes from the National Comprehensive Cancer Network.  This establishes the working rules for what kind of treatment or monitoring is thought appropriate for any stage of cancer.  For example, the treatment for a Stage I tumor is quite different from that of a Stage IV tumor.  There are guidelines for shifting to new medications, and for monitoring of primary tumors or mets after surgery.

Since kidney cancer most often metastasizes to the lung, I monitor some of their sites, and was thrilled to see this.  Power to the patients, people!

http://www.curetoday.com/community/tori-tomalia/2015/03/empowered-patients-change-national-cancer-guidelines

3 Comments

Filed under Guidelines, Patient Activism, Patient Resources

Recurrence? Is There an App for That–or a Medicine?

Being diagnosed with kidney cancer is a stunner.  Facing surgery and endless, oft unanswered questions changes your life.  Patients with small tumors, easily removed, are often told not to worry about it coming back.  Of course, there is ALWAYS the possibility that even small “I got it all tumors” can recur.  Sadly, the current guidelines fail to catch about 30% of recurrences, using the 2013, 2014 guidelines.  These guidelines were from an earlier era, where there were fewer small tumors found, so there was data lacking on long-term follow-up.

We patients ask? “Why not just take the meds that the patients with metastatic disease do?  Wouldn’t that prevent it from coming back?  If it works to fight the mets, why wouldn’t it prevent new ones from getting a foothold? “

Why not use the meds that they use now against metastatic disease? Why wouldn’t that work?  Have they tested that idea?

In February of 2015, a study was released which comparing patient response to 1) sunitinib (Sutent),2) sorafenib (Nexavar), or 3) placebo (no real medicine).  This  three-arm study included 1,943 patients who had locally advanced clear cell and non-clear cell histology RCCs. They were thought to be at high-risk for recurrence of their cancer, and might benefit from “adjuvant” therapy.  The researchers hoped that they would see a 25% improvement in time to recurrence of disease with the meds vs no meds.. That would means that the typical 5.8 years median Disease Free Survival (DFS) would go to 7.7 years.

Sadly, there was no benefit to taking the active drugs compared to the placebo.  More sad is that the patients had side effects associated with the drug, referred to as “adverse events”. In fact, many dropped out of the active agent arms into the placebo arm, certainly knowing that the med they were taking were anti-cancer meds.  Those “adverse events”, severe fatigue, hypertension or hand-foot reactions, were observed in those taking the active agents and rarely in the placebo patients.

The median time on the drugs was 8 months.  That means half the patients  were on drugs more than 8 months and half were on the drugs less than 8 months.  Even those patients starting with lower doses of the drugs fared worse than the placebo group.

Despite taking the medications and enduring the side effects, the recurrence was about the same.   With medication or without, these patients, as groups, did the same.  Those taking the meds had Disease Free Survival of 5.6 or 5.7 years, similar to those not taking any real meds.  There was no real added benefit to these patients.  Certainly the quality of the life was affected by the side effects, and the constant reminder of the spectre of more cancer.

What can patients learn from this study?

The fear of recurrence is real. After all, the expected time until the disease progressed (love using that term for cancer!), was about 5 1/2 years.  These patients were carefully monitored with CTs on a regular basis, which caught their recurrences as soon as possible. Had they not been in this trial, it is reasonable to expect that many would not have received those scans and not know of the recurrence as it happened.

The reality is that the typical patient may or may not continue to be monitored. Even those who passed the 5 1/2 year mark without recurrence may not realize that RCC can come back.  Again, 30% of recurrences in small, non-metastatic disease are not caught.  One can assume that the higher risk group in this trial would also be at risk for that level of recurrence.

Take-home message: At present, nothing has been shown to prevent recurrence of this locally advanced disease. Even the non-metastatic small tumors that have sent out invisible “wanna-be mets”, and no one can yet guess who is at the most risk.

The best approach is to monitor yourself and your general health and to demand CT scans, especially in the lungs, where metastatic RCC is most likely to start.  That does NOT mean an x-ray, as those mets would have to be about 1/4″ in order to be seen.  My own lung mets were under that size when first found, but there were hundreds of them, and they grew quickly.  Not visible on an x-ray, but growing every day.

Despite the disappointing study above, the ASSURE study, more clinical trials are recruiting patients for similar studies using drugs that have already been shown to be less active than those in the ASSURE study.  I would be cautious in getting into such a trial, and would spend my energies seeing that my monitoring is extended at least until 10 years past my surgery–even with those “got it all” primary tumors.

 

 

 

 

 

 

 

Leave a Comment

Filed under Clinical Trials, FDA Meds & Trials, Guidelines, Medications, Targeted Therapies, Uncategorized, Your Role

“Got It All!” or “Gotcha!” The Guessing Game…

No one wants to look for extra trouble after having been diagnosed with kidney cancer, even if the tumor is small.  Horrified already by the cancer, it is more horrifying to realize that there are no guarantees, even when told by a reassuring surgeon that he “got it all”.  The reality is that even small masses can have sent out cells to other sites, in the rest of the kidney, should it have remained, or to distant sites.  (In cancer, ‘distant’ is never as distant as it should be, as that means there is cancer in some area away from the primary tumor.  Could be lungs, bones or brain, sorry to say.) So now what do you do?  And what can you do?

With the more sensitive imaging techniques, x ray, ultrasound, CT scans, and MRIs, more smaller tumors are being found.  The hope is that finding and removing them will be completely curative, and there are plenty of papers to say that is the case.  But is it really true?  Unfortunately, finding tumors sooner also means that they may need to be “followed” or monitored longer than has been done in the past.

Consider the situation where a tumor about 2 inches in size is found, and scheduled to be monitored for five years.  Though with no symptoms, the patient gets that “last” scan, only to find a newly visible met. Not visible at the year four scan, it may have been slowly growing , unseen for 2-3 years  There may be further monitoring, and perhaps a surgery to remove it or one of the newer drugs is given, in hopes of downsizing or stabilizing the met. Happily the five year plan worked to catch this one.

Had that same tumor been found two years earlier, maybe just 1 inch in size, and monitored for five years, no further met would have been found.  The monitoring may well stop at five years, while the slow-growing met continues to grow, still not visible to the scan. It may only be symptoms at year 7 or 8 which brings the patient back to the doctor, and this time with larger and perhaps more mets, not visible at the year five.

Older monitoring schedules were based on the low and grim expectations for kidney cancer patients. There was little thought to tracking patients for more than five years. After five years there weren’t that many patients!

With earlier detection, and more treatment options, now is the time to review monitoring to capture recurrent disease, which we patient call, “It came back.”

We do look to the five year mark, thrilled to have made it, especially so if we have been cancer-free. Not quite like graduation, but more like the beginning of summer vacation.  But we (and our doctors) must be reminded to keep checking back in with the school principal/CT scan. We need to be sure no leftover bunch of cancer cells have become a measurable metastasis.

Let’s talk about size, as it really matters.  So does the attitude–aggressive or indolent–of the cells of  even the tiniest tumors.  Some may well have sent out their own colonists, looking for areas to set up housekeeping.  Clear cell RCC most often goes to the lungs, so lungs deserve close attention. X-rays can only see a pea-sized met, about 1 centimeter in size, so a CT scan, with and without contrast is best to find new mets.

What are the chances of finding mets, either sooner or later, with a small renal mass?  Lots of stats and some terminology here, so take notes as needed. Better yet,  grab your own post-surgery report, or the imaging reports so you know where you stand.

Measuring Small Renal Masses

Primary kidney tumors are measured on a T (for primary Tumor) scale that runs from TX–no primary tumor found, to T4, which is any tumor 10cm or larger(There are 2.54cm to the inch, so that is 10cm/2.54cm=3.9 inches.  Think four inches, and remember that it can be shaped like a potato, not a ball or a pancake. They can be measured  at a different spots in different scans. That is why measurements can vary from report to report.

T1 tumors are divided into T1a and T1b, and are limited to the kidney.  T1a tumors can be up to 4cm in size, using the largest dimension. Officially this is the small renal mass. Volume counts in the real world, but a 4cm x  2cm will be described as the same size as a 4cm x 4cm tumor.

Tumors which are named at T1b size are still limited to the tumor, but can be up to 7cm in the longest dimension, so about 2 3/4 inches long. The officially small renal masses   No longer described as small, it SOUNDS small by the name.  Assuming that there is no other evidence of cancer outside these masses, this is Stage I cancer. Given the grade of the biopsied tumor, it may be considered to be low or high grade, which is a measure of the aggressive nature of the tumor.

Tumors in the T2 range are also divided into T2a and T2b.  These are still limited to the kidney, with the division at the 7cm mark. T2a tumors are over 7 centimeters (think 3+ inches), and up to  10 centimeters, nearly 4 inches

 

 

 

 

 

 

 

 

Leave a Comment

Filed under Guidelines, RCC Basics

Treatments for Metastatic RCC? Does Timing Matter? Who Is On First?

“Now what?” may be the first coherent question a newly diagnosed cancer patient asks.  Maybe the smarter version of that is “What–when and why?” And your doctor had better have a good answer, as to the treatment, the when and the why.

We cancer patients usually get surgery “first”, even when the disease has spread.  Primary surgical strike and then a clean-up operation, in the ‘war on cancer’ parlance, we think–when we can think. “But which is the best and first clean-up approach?” we must ask. “What works the best? What can I take with my other health problems? Where does surgery or radiation fit in this scheme? What does the doctor favor and why? Where do I get this treatment? And then what?”

Treatments and their sequence are often chosen with little reliance or clarity as to the data. But some light was shed today at ASCO (American Society of Clinical Oncology). It released a comparison of the sequencing of High Dose Interleukin2 (HD IL2) and of targeted therapies for metastatic RCC.  Which should come first?

It shouldn’t be a high-stakes  gamble to choose a medication, as no one can guarantee any results–with any of the meds. You take a chance with any drug, so which do you start wi We may be closer to a logical approach in sequencing these drugs. Sequencing of these highly different medications has measurable effect on overall survival (OS)—and to patients’ lives.  That sequencing is critical and certainly can extend life, even when treatments fail, as they so often do.

A retrospective study  of 97 US patients who received HD IL2, before or after a targeted therapy was just presented at ASCO. These patients were followed for a median duration 37 months–half more than 37 months, half fewer than 37 months. Of that group, 22% had either a partial (14%) or complete (8%) response to HD IL2. (No specifics as to what was a “partial” response, perhaps a 30% shrinkage of the total tumor burden). In addition, another 24% of patients had Stable Disease(SD). Thus, nearly half of these patients benefited from having had HD IL2.

Stable disease is better than progressive disease, as any patient knows, though it was rarely measured in older trials. Though we patients really want a cure, we do want to be around for the next treatment, to have a surgery or ablation to remove the “stable” tumor, or to try another medication.

Of these 97 patients, 82 received HD IL2 before any targeted therapy. Another 15 patients had HD IL2 following a TKI therapy. That timing made an important difference. HD IL2 followed by the TKI, showed a median Overall Survival (OS) of 61.8 months. The OS of those with the TKI before the HD IL2 was 48 months.  A median, not an average, so half lived longer, half lived shorter than the quoted medians.

A pre-2006 NCI (National Cancer Institute) series showed a 19 month median survival for HD IL2 alone, and a similar 19 months for the use of targeted therapy alone. Using the two in sequence dramatically improved OS, especially when HD IL2 was first line of treatment.  Obviously things have improved, though it can be very difficult to compare older trial data, as so many variables are different–including the type of RCC the patients had as they entered the trials.

Several points can be made from this study. First, no therapy should be examined only as to Complete or Partial Response. Stable Disease also adds to Overall Stability.  To stop the tumor from growing, even if for a period of time, is valuable to patients and can prep them for the next anticipated treatment.  Sure beats tumor growth!

Second, therapies should be chosen to maximize their impact on the overall survival of the patient. Some patients will naturally be precluded (or delayed) from surgery, or taking one drug due to existing co-morbidities, due to heart disease or liver damage. For those post-op patients, likely to tolerate the side effects of HD IL2, it should be given in a first-line setting.

The most critical variables that impact patients are the recommendations and expectations of the physician. Most patients are not even told about HD IL2 treatment, or it is dismissed casually as “not for you”.  Others are told to wait until more mets emerge, with some weird theory that waiting for more trouble is a good thing!  Many nephrectomy patients are not monitored post-operatively, despite the risk of mets. This is surely an indicator of the lack of knowledge by urologists. Still others are told that the disease has spread, and that nothing can be done–also untrue.

The rarity of RCC and its variants leaves most physicians unaware of all options in the field, and how to any one might suit for a particular patient.  Most oncologists to whom patients are referred, have little or no experience treatmenting for RCC, or may not access to academic centers for support until it is too late. Even the pathology of the primary tumor and later metastases may be questionable, adding to the challenge of care.

With the dramatic changes in the RCC field, this is to be expected—but not tolerated. The patient may have to provide his physician with the data that can extend or save his life, which is a sad but realistic commentary on the field today.

 

1 Comment

Filed under Biological Systemic, Guidelines, Immune Therapies Old & New