VEGF Inhibition is the Best Option First Line Metastatic Renal Cell Carcinoma

Robert A. Figlin MD, FACP
Professor of Medicine and Biomedical Sciences
Samuel Oschin Comprehensive Cancer Institute
Cedars-Sinai Medical Center
Los Angeles, California

Management of mRCC: Strategies for today

How can we optimise outcomes with current therapies in the first-line treatment of mRCC?

Strategies for today

Multiple targeted agents

Effective therapy management

Improved patient outcomes

Dose optimisation

Maximise treatment duration

Adverse event management

Management of mRCC: Strategies for today and tomorrow

How can we achieve our goal of long-term survival in mRCC?

Strategies for tomorrow

Goal

Challenge

Potential solutions

Long-term survival

Resistance to current agents

Sequencing and combination of agents

Novel agents

Individualisation of treatment

Appropriate treatment selection

Biomarkers

Patients with mRCC are heterogeneous

Predict risk of recurrence?

Choose appropriate therapy?

Avoid toxicity?

Current options for maximising patient benefit with first-line agents

Introduction

Several targeted agents are now available for the treatment of mRCC

Multiple targeted agents

Factors aiding treatment choice

Appropriate treatment selection

Optimal efficacy (primary treatment goal)

Patient risk status

Therapy management (consider co-morbidities)

Recommended targeted agents for first-line treatment of mRCC: Results from pivotal trials

Agent	N	ORR (%)	Median PFS (months)	Median OS (months)
Sunitinib vs IFN-a ¹	750	47 vs 12 P<0.001	11 vs 5 P<0.001	26.4 vs 21.8 P=0.051
Bevacizumab + IFN-a vs IFN-a ^{2,3}	649	31 vs 13 P=0.0001	10.2 vs 5.4 P<0.0001	23.3 vs 21.3 P=0.1291
Bevacizumab + IFN-a vs IFN-a ^{4,5}	732	26 vs 13 P<0.0001	8.5 vs 5.2 P<0.0001	18.3 vs 17.4 P=0.069
*Pazopanib vs placebo ^{6,7}	435	30 vs 3 [†] P<0.001	11.1 vs 2.8 P<0.0001	22.9 vs 20.5 [†] P=0.224
Poor risk patients				
Temsirolimus vs IFN-a ^{8*}	626	8.6 vs 4.8 _{NS}	5.5 vs 3.1 P<0.001	10.9 vs 7.3 P=0.008

^{*}Poor risk patients (modified MSKCC criteria); †Includes cytokine refractory and treatment-naïve patients

Motzer RJ, et al. J Clin Oncol 2009;
 Escudier B, et al. Lancet 2007;
 Escudier B, et al. J Clin Oncol 2010;
 Rini BI, et al. J Clin Oncol 2008;
 Rini B, et al. J Clin Oncol 2010;
 Sternberg C, et al. J Clin Oncol 2010;
 Hudes G, et al. N Engl J Med 2007

'Real world' clinical experience with targeted agents: Sunitinib expanded-access programme

International programme involving 4,564 patients with mRCC (treatment-naïve or cytokine-refractory)

	Overall population	Brain metastases	ECOG PS ≥2	Non-clear cell histology	Age ≥65 years
Evaluable patients (n)	4,349	320	582*	588	1,414
PFS, months	10.9	5.6	5.1	7.8	11.3
(95% CI)	(10.3–11.2)	(5.2–6.1)	(4.2–5.5)	(6.3–8.3)	(10.7–12.3)
OS, months	18.4	9.2	6.7	13.4	18.2
(95% CI)	(17.4–19.2)	(7.8–10.9)	(6.0–7.9)	(10.7–14.9)	(16.6–19.8)

^{*}There were 503 patients with ECOG PS ≥2 evaluable for OS

Sunitinib demonstrated efficacy in subpopulations of interest

Efficacy in mRCC: ESMO/EAU treatment guidelines (2011)

	Setting	Treatment	
Treatment- naïve	Favourable or intermediate MSKCC risk status	Sunitinib ^{1,2} Bevacizumab + IFN-α ^{1,2} *Pazopanib ^{1,2}	
	Poor MSKCC risk status	Temsirolimus ^{1,2}	
	Prior cytokine	Sorafenib ^{1,2} Pazopanib ^{1,2}	
Define stem	Prior VEGFR-TKI	Everolimus ^{1,2}	
Refractory	Prior mTOR	Clinical trials ¹	

Appropriate treatment selection: Defining risk status in clinical trials

MSKCC criteria

Karnofsky PS <80

Low serum hemoglobin

High corrected calcium

High LDH

Time from diagnosis to treatment <1 year

ARCC trial criteria

Karnofsky PS = 60/70

Low serum haemoglobin

High corrected calcium

High LDH

Time from diagnosis to randomization <1 year

Multiple organ site of metastasis

Effective therapy management

Probability of a Tumour Response Increases with Mean Daily Sunitinib Exposure

Higher Exposure to Sunitinib Is Associated with Longer Time to Progression and OS

Therapy management: Appropriate treatment duration

Objective response may be increased by long-term exposure to targeted agents

Analysis		Sunitinib N=374		IFN-α N=373	
	Duration, months (range)	ORR, %	Duration, months (range)	ORR, %	
Interim	6 (1–15)	31 (26–36)	4 (1–13)	6 (4–9)	<0.001
Final					
Invest.	11 (<1–41)	47 (42–52)	4 (<1–40)	12 (9–16)	<0.001
Central		39 (34–44)		8 (6–12)	<0.001

What is the best dose or optimal schedule for VEGFR-targeted agents?

Phase II EFFECT Study: Sunitinib 4/2 vs Continuous Dosing Schedule as First-line Therapy in mRCC

1:1 randomisation stratified by risk factors based on published MSKCC data [Motzer, 2002]

Data cut-off was August 2010

Motzer RJ et al. Presented at the 2011 Genitourinary Cancers Symposium (abstract LBA308).

Phase II EFFECT Study: Sunitinib 4/2 vs Continuous Dosing Schedule as First-line Therapy in mRCC

Endpoint	Sunitinib 50 mg/d Schedule 4/2 (n = 146)	Sunitinib 37.5 mg/d CDD schedule (n = 146)	
ORR, % (95% CI)	32.2 (24.7–40.4)	28.1 (21.0–36.1)	
Р	.444		
TTP, median (95% CI), months	9.9 (7.0–13.4)	7.1 (6.8–9.7)	
HR (95% CI)	0.77 (0.57–1.04)		
Р	.090		
OS, median (95% CI), months	23.1 (17.4–25.4)	23.5 (17.5-not reached)	
HR (95% CI)	1.09 (0.78–1.50)	
Р		.615	
PFS, median (95% CI), months *	8.5 (6.9–11.1)	7.0 (6.0–8.7)	
HR (95% CI)	0.77 (0.58–1.02)		
Р	.070		

Conclusions

- In this randomized phase II mRCC trial, there was no statistically significant difference in TTP between the two treatment schedules
 - ORR and OS were similar
 - Grade 3/4 AE profiles were similar
 - No significant difference was observed in PRO between the two treatment arms; however, an 'on/off' effect was evident for Schedule 4/2
- There was a trend toward inferior TTP (and PFS) with continuous dosing, and Schedule 4/2 was statistically superior to continuous dosing in time to deterioration
- The treatment goal should be to adhere to the approved dose and schedule

Individualized Dose/Schedule Strategy for Sunitinib in RCC patients to maximize dose and minimize time off Rx: Correlation with DCE-US data

A single Centre Experience

Bjarnason et al: ESMO 2011

Rationale for dose / schedule changes

Clinical observation:

- Pts referred as Sutent resistant taking 37.5 and 25 mg
- Responded / stabilized when dose escalated to 50mg, and Rx schedule changed to 14 days on/ 7 days off

Individually maximize dose and course duration

- AUC associated with better response, PFS and OS
- High inter-patient variability in pharmacokinetics (40-60%)
- Ethnic differences in toxicity
- Sunitinib steady state reached at 10-14 days

Minimize time off therapy

- Progression during Rx breaks
- Minimize toxicity / Maximize overall duration of therapy
 - Dose modifications done to keep dose limiting toxicity at ≤ grade-2

Individualized Dose/Schedule Strategy: Maximize dose and minimize time off therapy

Dose modifications done to keep dose limiting toxicity at ≤ grade-2

Pts seen on day 14 on first course to assess toxicity

- DL1: Starting dose: 50 mg, 28 days on / 14 days off:
 - Reduce off period to 7 days if minimum toxicity
- DL 2: 50 mg, 14 days on / 7 days off
 - Individually increase # of days on treatment
- DL 3: 50 mg, 7 days on / 7 days off
 - Individually increase # of days on treatment
- DL 4: 37.5 mg continuously
 - Individualize 7 day breaks off Rx based on toxicity
- DL 5: 25 mg continuously
 - Individualize 7 day breaks off Rx based on toxicity

Single Centre retrospective data: Patient characteristics for 172 pts

	patient (%)
Mean age = 60	
Males / Females	125 / 47
Heng prognostic group:	
Favorable	35 (20)
Intermediate	102 (60)
Poor	35 (20)
Histology	
Clear cell	136 (79.1)
Papillary	19 (11.1)
Chromophobe	4 (2.3)
	10 (- 0)

	patient (%)
Nephrectomy	
yes	139 (80.8)
no	33 (19.2)
Line of Therapy	
1 st	103 (59.1)
2 nd	53 (31.1)
3 rd	13 (8.1)
4 th	3 (1.7)

Imaging done q3 months

Median PFS based on Sunitinib dose/schedules used for the majority of time on Rx. N=172 RCC pts

Schedule	pts	Median PFS Mo	95% CI Mo	P for Pairs*
25 / 37.5 mg cont	62	11.9	8.3 – 19.0	< 0.0001
50 mg 7-14/7	71	11.5	7.9 – 15.8	< 0.0001
50 mg 28/14	39	4.9	3.4 – 6.9	

Patient were only dose reduced (37.5 mg) if they did not tolerate the 50mg 7 / 7 schedule

The 71 (41.2%) patients that were maintained on 50 mg individualized 7-14/7 schedule would have been dose reduced to 37.5 if standard dosing criteria were used.

22.6% of patient remained on 50 mg 28/14

172 RCC patients: Median PFS based on Sunitinib dose/schedules used for the majority of time on Rx.

172 RCC patients: Response data

Schedule	pts	PD	PR	SD	PR and SD
		%	%	%	%
25 / 37.5 mg cont	62	17.7	21.0	61.3	82.3
50 mg 7-14/7	71	22.5	18.3	59.2	77.5
50 mg 28/14	39	35.9	15.4	48.7	64.1

Planned confirmatory trial: Patient numbers and statistics

- Based on recent studies and the standard arm of the EFFECT trial (identical eligibility criteria as this study)
 - Median PFS of 8.5 month in patients treated using standard Sunitinib dosing criteria.
- Based on the retrospective data from Bjarnason, MD-Anderson and two Pfizer trials
 - Median PFS of 14 months with an individualized dosing strategy
- Number of patient required:
 - Setting H0: median PFS=8.5 months versus HA: median PFS=14 months,
 - > alpha=0.05, a two-sided, single-arm non-parametric survival test would have over 90% power to detect this difference with a total of 99 patients on study
 - Accounting for a 10% loss to follow-up, we will aim to accrue a total of 110 patients.
 - If the true median PFS is 12 or 13 months, this trial design with a sample size of 99 patients would still have 67% and 81% power respectively to detect this difference.

Individualized Dose/Schedule Adjustment for Toxicity

- DL1: Starting dose: 50 mg, 28 days on / 14 days off
- DL 2: 50 mg, 14 days on / 7 days off
 - Individually increase # of days on treatment
- DL 3: 50 mg, 7 days on / 7 days off
 - Individually increase # of days on treatment
- DL 4: 37.5 mg 14 days on / 7 days off
 - Individually increase # of days on treatment
- DL 5: 25 mg 14 days on / 7 days off
 - Individually increase # of days on treatment

Efficacy of bevacizumab appears to be independent of baseline VEGF levels

VEGFR3 polymorphisms associated with differential response to sunitinib

Response (PD vs CR+PR+SD)

VEGFR3 rs307821 **P=0.045** (Univariate) **VEGFR3** rs307826 **P=0.028** (Univariate)

Hypertension as a biomarker of improved efficacy during sunitinib treatment

Hypertension associated with improved response, PFS and survival

Control of blood pressure did not diminish the effect of sunitinib

Therapy management: Adverse event management

Key adverse events associated with targeted agents

VEGFR-targeted therapy

mTOR inhibitors

Fatigue/asthenia
Skin toxicities
Gastrointestinal symptoms
Stomatitis
Hypertension

Metabolic abnormalities
(e.g. hyperglycaemia)
Fatigue/asthenia
Rash
Anaemia
Pneumonitis (rarely)

Adverse-event management

Prior to treatment

- Patient education about potential adverse events
- Assess and stabilise baseline co-morbidities

During treatment

- Monitor patients frequently
- Prompt adverse event management
 - Standard medical intervention
 - Consider dose reductions/ interruptions

Conclusions

- Targeted agents have significantly improved patient outcomes in mRCC
 - In some patients, it is now possible to achieve long-term survival with targeted agents, such as sunitinib and temsirolimus
- To maintain patients on currently available agents and thus derive optimal clinical benefit, we need to:
 - Select treatment appropriately according to patient risk status
 - Manage the chosen therapy effectively through:
 - Optimising dose
 - Maximising treatment duration
 - > Prompt and effective adverse-event management

Novel agents and approaches for the treatment of mRCC

Can we further improve clinical outcomes for patients with mRCC?

- Targeted agents have significantly improved patient outcomes in mRCC
- However, resistance to targeted agents eventually develops and some patients do not respond to treatment
- Several approaches are being assessed to try to improve patient outcomes

Optimising use of existing agents

Ongoing trials

Combination therapy

Sequencing

Novel agents

More potent TKIs

PI3K/mTOR inhibitors

Immunotherapy

Optimising use of existing agents

Is there an optimal TKI for first line treatment?

Phase III non-inferiority trial of pazopanib vs sunitinib in first-line mRCC (COMPARZ)

Primary endpoint: PFS

Secondary endpoints: OS, ORR, time to response, duration of response, safety, QoL

Phase III patient preference study of sunitinib vs pazopanib (PISCES)

Eligibility criteria:

- Locally advanced or mRCC of any histology
- Non-measurable disease permitted if metastatic disease confirmed
- No prior systemic therapy for advanced or mRCC
- ECOG PS 0 or 1

- Primary endpoints: Patient preference (questionnaire)
- Secondary endpoints: Reason for patient preference; fatigue; dose modifications and time to dose modification; safety/tolerability

Optimising use of existing agents

Combination and sequencing of therapy

Combination therapy may be limited by toxicity profiles

Combination	N	Frequently reported grade 3/4 AEs
Bevacizumab + sunitinib	26	Hypertension/MAHA (60%) Proteinuria (36%) Elevated lipase (28%)
Bevacizumab + sunitinib	38	Hypertension/MAHA (47%) Fatigue (24%) Thrombocytopenia (18%) Proteinuria (13%)
Bevacizumab + everolimus	80	Proteinuria (26%) Mucositis/stomatitis (15%) Fatigue (12%)
Bevacizumab + temsirolimus	80	Grade 3 or worse (77%) Grade 4 (13%) Discontinuation rate for toxicity (42%)

Ongoing phase III combination studies in the first-line setting: INTORACT

- Primary endpoint: tumour measurements and survival status
- Secondary endpoints: safety, investigator-assessed PFS, ORR, survival

Phase II study of VEGF, RAF kinase and mTOR combination therapy: BeST

- Primary endpoint: PFS
- Secondary endpoints: Safety, OS, ORR, number and percentage of patients with SD at 6 months

Phase II combination study: RECORD-2

- Primary endpoint: PFS
- Secondary endpoints: OS, ORR, response duration, safety, QoL

Sequential therapy with current agents

- Sequencing of therapy is commonly performed in clinical practice
 - May enable resistance to individual agents to be overcome
 - Less toxicity than combination therapy
- For patients who have progressed following a tyrosine kinase inhibitor, everolimus is currently recommended as second-line treatment
- The optimal sequence remains to be determined
 - Ongoing trials may provide further information

SWITCH: Phase III sequential study of sorafenib and sunitinib

- Primary endpoints: overall PFS
- Secondary endpoints: total time to progression, OS, disease control rate and cardiotoxicity

RECORD-3: Phase II sequential study of sunitinib and everolimus

 Secondary endpoints: second PFS, ORR, duration of response, patient-reported outcomes, OS

Novel agents

Tyrosine kinase inhibitors in development:

Axitinib and Tivozanib

Relative potency of VEGF-targeting TKIs

Phase III study of tivozanib vs sorafenib in first- or second-line setting (TIVO-1)

Eligibility criteria:

- Recurrent or mRCC with a clear-cell component
- Measurable disease
- Treatment-naïve or one prior treatment:
 - Cytokines
 - Investigational agent
 - Hormonal therapy
 - Chemotherapy
- ECOG PS 0 or 1

- Primary endpoint: PFS
- Secondary endpoints: OS, ORR, duration of response, safety and tolerability, kidney-specific symptoms and health outcome measurements, pharmacokinetics

Phase III study of axitinib versus sorafenib in second-line (AXIS)

- Primary endpoints: PFS
- Secondary endpoints: OS, ORR, safety and tolerability, duration of response, patient-reported outcomes

AXIS: Axitinib significantly prolonged PFS versus sorafenib

Phase III study of first- and second-line axitinib versus sorafenib in mRCC patients (1051)

Eligibility Criteria:

- Histologicallyconfirmed mRCC with clear cell component
- Measurable disease
- No prior systemic firstline therapy or RECIST-defined progressive disease following one prior systemic first-line regimen for mRCC containing sunitinib, cytokines, or both

Primary endpoint: PFS

Secondary endpoints: OS, response rate, safety and tolerability, duration of response, kidney specific symptoms and health status

Conclusions

- Despite the clinical benefits observed with current targeted agents, challenges remain to further improve patient outcomes
- Evidence demonstrates sequential therapy is the preferred treatment strategy
 - Ongoing trials will offer further evidence regarding the optimal sequencing of current and future agents
- Novel agents in clinical development may also provide further treatment options
 - Axitinib has demonstrated efficacy as second-line treatment for mRCC and supports sequencing of TKI to TKI
 - Many new agents are currently in phase 3 development