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A B S T R A C T

For almost four decades, my work has focused on one challenge: improving the delivery and
efficacy of anticancer therapeutics. Working on the hypothesis that the abnormal tumor
microenvironment— characterized by hypoxia and high interstitial fluid pressure—fuels tumor
progression and treatment resistance, we developed an array of sophisticated imaging
technologies and animal models as well as mathematic models to unravel the complex biology
of tumors. Using these tools, we demonstrated that the blood and lymphatic vasculature,
fibroblasts, immune cells, and extracellular matrix associated with tumors are abnormal, which
together create a hostile tumor microenvironment. We next hypothesized that agents that
induce normalization of the microenvironment can improve treatment outcome. Indeed, we
demonstrated that judicious use of antiangiogenic agents— originally designed to starve
tumors— could transiently normalize tumor vasculature, alleviate hypoxia, increase delivery of
drugs and antitumor immune cells, and improve the outcome of various therapies. Our trials
of antiangiogenics in patients with newly diagnosed and recurrent glioblastoma supported this
concept. They revealed that patients whose tumor blood perfusion increased in response to
cediranib survived 6 to 9 months longer than those whose blood perfusion did not increase.
The normalization hypothesis also opened doors to treating various nonmalignant diseases
characterized by abnormal vasculature, such as neurofibromatosis type 2. More recently, we
discovered that antifibrosis drugs capable of normalizing the tumor microenvironment can
improve the delivery and efficacy of nano- and molecular medicines. Our current efforts are
directed at identifying predictive biomarkers and more-effective strategies to normalize the
tumor microenvironment for enhancing anticancer therapies.

J Clin Oncol 31:2205-2218. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Since 1974, my colleagues and I have investigated
solid tumors not just as a collection of malignant
mutated cells but rather as aberrant organs com-
posed of cancer cells and their stroma—also re-
ferred to as the tumor microenvironment. This
microenvironment is composed of blood and
lymphatic vessels and a variety of nonmalignant
host cells—all embedded in an extracellular ma-
trix (Fig 1A). Our work has shown that the tumor
microenvironment is abnormal and that these ab-
normalities can fuel tumor progression and treat-
ment resistance. Moreover, normalization of the
microenvironment can improve treatment out-
come in mice and patients with malignant and
nonmalignant diseases.2-5 Here I will discuss how
we obtained these insights by imaging tumors in
mice, and how we validated these concepts in
patients. I will present our findings first in blood
vessels, then lymphatic vessels, and finally the ex-
tracellular matrix.

TUMOR VASCULATURE IS ABNORMAL

Our initial work on the tumor microenvironment
and drug delivery involved growing tumors in ani-
mals, excising them for various measurements, and
then using mathematic models to gain insight into
the inner workings of tumors.6,7 Although insight-
ful, this approach did not capture dynamic changes
at a cellular or subcellular resolution. To overcome
this, we developed transparent windows and sophis-
ticated, high-resolution optical imaging techniques
that allowed us to visualize events in tumors in real
time.8-10 Coupled with molecular probes, image
analysis, and mathematic models, this approach has
provided unprecedented insights into molecular,
cellular, anatomic, and functional changes during
tumor progression and in response to treatment
(Data Supplement Fig S1).10,11

Unlike normal vessels, which are orderly, tu-
mor vessels are tortuous, saccular, and chaotic in
their organization (Fig 1B; Data Supplement
Videos S1 [www.jco.org/site/v/3653/S1.mov] and
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S2 [www.jco.org/site/v/3653/S2.mov]).1,12 The structure of the vessel
wall is also abnormal, with large gaps between endothelial cells, detached
pericytes, and abnormally thick or thin basement membranes.13-16 Con-
sequently, tumor vessels are leaky in some places and not in others, with
overall leakinessdependentonthehostorgan.17-20Moreover,thesevessels
change with tumor growth and treatment (Data Supplement Video S3
[www.jco.org/site/v/3653/S3.mov]).

Clinical experience indicates that a primary tumor may respond
to certain therapies, whereas its metastases might not.21 To under-
stand the role of different host microenvironments in tumor biology
or response to treatment, we examined tumors in various organs of
mice, such as the brain, mammary fat pad, liver, pancreas, and
skin.19,22-27 For instance, when we inoculated the same breast cancer
cells in three different sites, the resulting vasculature was abnormal yet
vastly different in each site (Fig 2A).1

We also examined blood vessels in spontaneously arising tumors
in various organs, such as skin, breast, pancreas, liver, and colon.30

Figure 2B shows the vasculature of a spontaneously arising colon

cancer in a genetically engineered mouse model.28 Note the highly
organized blood vessels in normal colon. However, similar to trans-
planted tumors, the vessels in the spontaneous colon cancer are ab-
normal, and this abnormality increases as tumors progress. More
crucially, these blood vessels are as structurally abnormal as those in
colon carcinomas in patients (Fig 2C).29

ABNORMAL VASCULATURE LEADS TO HOSTILE
TUMOR MICROENVIRONMENT

The abnormal vascular structure leads to spatially and temporally
heterogeneous blood perfusion in tumors.31 In any given vessel, blood
flow can change with time. Compounding this heterogeneity, blood
flow can be quite brisk in one region of the tumor and static in another
region, and the flow in each region can also change with time.22,23,32-34

There are two major causes of this flow heterogeneity: one, physical
forces, known as solid stresses, generated during tumor growth can
compress vessels, resulting in reduced or no flow in the pinched vessels
and the ones downstream35,36; and two, excessive vessel leakiness,
leading to plasma escape and hemoconcentration, can itself cause flow
stasis, even when that vessel has an open lumen.37,38

Independent of the cause, this heterogeneity in perfusion
has multiple adverse consequences. It limits the access of blood-
borne drugs and effector immune cells to poorly perfused regions
of tumors39 and leads to hypoxia and low extracellular pH
(Data Supplement Fig S2).40,41

Hypoxia is known to aid tumor progression and metastasis by
inducing genetic instability, angiogenesis, immunosuppression, in-
flammation, the cancer stem-cell phenotype, epithelial-mesenchymal
transition, resistance to cell death by apoptosis and autophagy, and
altered metabolism.42-47 Hypoxia also confers resistance because
various treatments, such as radiation, certain chemotherapies, photo-
dynamic therapy, and even immunotherapies, require oxygen to
be effective.43,44,48,49

Because of their excessive leakiness, tumor vessels are unable to
maintain pressure gradients across their walls, causing interstitial fluid
pressure (IFP) to rise close to microvascular pressure levels.50,51

Hence, unlike normal skin or breast, where IFP is close to zero, tumors
in mice and patients exhibit elevated IFP (Data Supplement Fig
S3).52-60 Moreover, IFP is uniformly elevated inside the tumor and
drops precipitously in the tumor margin to normal values.61-63 As a
result, the transport of drugs occurs primarily by diffusion within
tumors, and the interstitial fluid oozes out from the tumor margin
into the surrounding tissues, where the pressure is low. This fluid not
only causes peritumor edema but also carries growth factors and
cancer cells with it, further fueling tumor progression.64,65 Finally, as
stated earlier, excessive leakiness and vascular compression cause flow
stasis in tumor vessels, resulting in hypoxia, which further upregulates
vascular endothelial growth factor (VEGF) and other angiogenic mol-
ecules, thus establishing a vicious cycle (Data Supplement Fig S4).

VASCULAR NORMALIZATION HYPOTHESIS: BENCH
TO BEDSIDE

Realizing the adverse consequences of hypoxia and interstitial hyper-
tension, we began to look for ways to remedy these microenvironmen-
tal abnormalities. There are only two ways to increase oxygen levels in
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B

Fig 1. (A) The microenvironment is composed of blood and lymphatic vessels
and a variety of nonmalignant host cells, all embedded in an extracellular matrix.
The host cells include fibroblasts and a variety of resident and trafficking immune cells.
(B) Vasculature of a brain tumor (upper left quadrant) and the surrounding brain of a
mouse. Color overlay denotes scale of the depth of the vessel, with yellow vessels
closest to the viewer, and red vessels deepest. Reproduced from.1
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Fig 2. (A) Transparent windows were implanted in the mammary gland, cranium, and dorsal skin of mice. Vasculature of breast tumors grown in these different sites
is abnormal yet significantly different. Reproduced from.1 (B) The vasculature of the normal colon and that of a spontaneously arising colon cancer in a genetically
engineered mouse model. Note that the blood vessels in a normal colon are highly organized. However, similar to transplanted tumors, the vessels in the spontaneous
colon cancer are abnormal, and this abnormality increases as the tumor progresses over weeks 11 to 16. Reproduced from.28 (C) A polymer cast of the vasculature
of a 1-lb human colon cancer. Note that this vasculature is as abnormal as that in the murine tumors. Reproduced from.29
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tumors: one, increase the supply of oxygen via blood vessels; and two,
decrease the consumption of oxygen by cells. Initially, we attempted to
improve the blood supply of tumors using vasoactive agents.31,66-69

However, the improvements in blood perfusion were short lived be-
cause the blood vessels of the tumor remained abnormal. Hence, we
looked for translatable approaches to normalize tumor vessels.2-4,13

In physiologic angiogenesis, the effects of proangiogenic mole-
cules, such as VEGF, are exquisitely counterbalanced by endogenous
antiangiogenic molecules, such as sVEGFR1 and thrombospondins
(Fig 3A, panel 1).13,71 During tumor angiogenesis, because of genetic
and epigenetic factors, this balance is tipped in favor of new vessel
formation. However, the resulting vessels are highly abnormal both
structurally and functionally (Fig 3A, panel 2). We posited that by
mopping up some of the excess VEGF using bevacizumab or by
blocking VEGF signaling, we could restore this balance. This would
prune some abnormal vessels and remodel the remaining vessels,

resulting in a normalized vasculature (Fig 3A, panel 3). In turn, this
would reduce tumor hypoxia and IFP, resulting in enhanced efficacy
of various therapies. If the antiangiogenic agent is too potent or the
dose is too high, the balance can tip in the other direction and cause
excessive vessel pruning. This may cause necrosis and delay tumor
growth (Fig 3A, panel 4, top). However, increased hypoxia can de-
crease the efficacy of various therapies and even increase metastasis.
Alternatively, tumors might begin to make abnormal vessels again by
activating other proangiogenic pathways (Fig 3A, panel 4, bottom).
Hence, as discussed later in the Biomarkers of Response and Resis-
tance to Antiangiogenic Therapy section, considerable effort is now
directed toward blocking these escape pathways.

The normalization hypothesis offered a potential resolution of an
outstanding paradox: Bevacizumab increased survival only when used
with chemotherapy or immunotherapy for metastatic colorectal,
lung, and kidney cancers (Data Supplement Table S1).72-75 But the
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Fig 3. (A) Normalization hypothesis. Originally published by Scientific American, Inc. Illustration © 2013 Kasnot Illustration, Inc. All rights reserved.2-4 (B) Blood
perfusion in recurrent glioblastomas during treatment with cediranib, a pan–vascular endothelial growth factor receptor tyrosine kinase inhibitor. Note that the perfusion
goes up in some patients, remains stable in others, and goes down in the rest. Data adapted.70 (C) Kaplan-Meier survival curves for patients with recurrent glioblastoma
treated with cediranib. Note that the patients whose tumor perfusion increased survived longer than the rest. Data adapted.70

Rakesh K. Jain

2208 © 2013 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Downloaded from jco.ascopubs.org on July 24, 2014. For personal use only. No other uses without permission.
Copyright © 2013 American Society of Clinical Oncology. All rights reserved.



original goal of anti-VEGF therapy was to destroy the blood vessels of
tumors,76,77 and chemotherapy or immune therapy requires func-
tional blood vessels to deliver these therapeutics. So how could vessel
destruction help these therapies (Data Supplement Fig S5)? Our
thought was that if the vessels began to function better in response to
anti-VEGF therapy, they would enhance both the delivery and effec-
tiveness of concurrent therapies.2-4,13 However, this concept was new
and naturally required validation.

We first tested this idea in a number of animal models, using both
direct and indirect angiogenesis inhibitors. Indeed, these agents nor-
malized blood vessels (Data Supplement Video S3 [www.jco.org/site/
v/3653/S3.mov]).1-4,13,78-84 These findings raised the next question: Is
normalization an artifact of animal models? So, in collaboration with
my colleague, Dr Christopher Willett, we tested this concept in pa-
tients with rectal carcinoma receiving bevacizumab. The clinical data
confirmed our preclinical finding that blocking VEGF could normal-
ize tumor vessels and lower IFP.57,59 But this raised a new set of
questions, such as: When does normalization begin? When does it
end? Is the outcome superior when the therapy is administered during
the time window of normalization?

To address these questions, we returned to the bench—this
time using mice with human glioblastoma (GBM) xenografts in
cranial windows—and found that normalization began by day 1
and lasted 5 to 6 days, alleviating hypoxia during this time window.
More crucially, the outcome of radiotherapy was superior when
administered during the normalization window. We also discov-
ered the underlying molecular mechanisms: Activation of Ang1/
Tie2 signaling contributed to recruitment of pericytes, and
activation of matrix metalloproteinases (MMPs) contributed to
thinning of the vascular basement membrane.84

Moreover, in collaboration with my colleagues, Drs Tracy Batch-
elor and Gregory Sorensen, we confirmed vascular normalization in
patients with recurrent GBM treated with the oral pan-VEGFR kinase
inhibitor cediranib. As a result, brain edema resolved, and white mat-
ter tracts were restored (Data Supplement Video S4 [www.jco.org/
site/v/3653/S4.mov]). Similar to our mouse model, normalization
began by day 1, but the normalization window in patients lasted for at
least 1 month—long enough for almost a full course of radiation
therapy (Data Supplement Fig S6).85

All this clinical work showed that anti-VEGF therapies could
normalize tumor vessels. But a crucial question arose: How does
tumor vascular normalization affect patient survival? In fact, patients
whose blood vessels normalized the most had the highest progression-
free and overall survival (OS) rates (Data Supplement Fig S7).86 But
the most compelling support for the role of vascular normalization
came when we looked at the blood perfusion changes in tumors.
Anti-VEGF therapy actually increased tumor perfusion in some pa-
tients for nearly 4 months. Moreover, the patients whose tumor per-
fusion increased survived 6 months longer than those whose blood
perfusion did not (Figs 3B and 3C).34,70

In a subsequent trial, we saw the same pattern in patients with
newly diagnosed GBM treated with cediranib and chemoradiation. In
20 patients, tumor blood perfusion increased for 1 month, and in 10, it
decreased.87 Our hypothesis is that increased blood perfusion allevi-
ates tumor hypoxia. Oxygen is a well-known radiation sensitizer and
should improve tumor response to radiation therapy. Oxygen can also
increase antitumor immunity. So we would expect better survival in
the patients with increased perfusion. Indeed, the patients whose

tumor blood perfusion increased survived approximately 9 months
longer than those whose did not. These two trials provide compelling
clinical evidence that antiangiogenic agents, which were originally
developed to starve tumors, can increase tumor blood perfusion in
some patients and that those patients survive longer. Moreover, these
observations suggest that a noninvasive imaging test—perfusion mag-
netic resonance imaging—may enable clinicians to identify early on
patients most likely to benefit from antiangiogenic therapy.

BIOMARKERS OF RESPONSE AND RESISTANCE TO
ANTIANGIOGENIC THERAPY

To date, 10 antiangiogenic drugs have been approved for treatment of
12 different malignancies. However, similar to many targeted thera-
pies, the OS benefit from antiangiogenic therapies remains modest
(Data Supplement Table S1). Unfortunately, unlike many targeted
therapies, there are no validated biomarkers for antiangiogenic
agents.88 If we could find biomarkers to identify patients more likely to
benefit from these drugs, the survival benefit in patients receiving
anti-VEGF drugs may be comparable to that from other targeted
therapies (Data Supplement Table S2). To answer these critical ques-
tions, we need to better understand the intrinsic and evasive resistance
mechanisms.16,89,90 Treated tumors could release additional proan-
giogenic molecules or recruit tumor vessels via mechanisms less de-
pendent on VEGF (Data Supplement Fig S8). Tumor endothelial cells
could develop cytogenetic abnormalities, and cancer-like stem cells may
differentiate into endothelial cells—processes that may reduce sensitiv-
ity to anti-VEGF drugs. In addition, recruitment of myeloid cells,
activation of cancer-associated fibroblasts, or coverage of tumor ves-
sels by pericytes may also render tumor vessels insensitive to VEGF
blockade. In collaboration with Drs Dan Duda, Lei Xu, and Yves
Boucher and our clinical colleagues, we are examining these questions
in more than 20 multidisciplinary trials by measuring tissue, circulat-
ing and imaging biomarkers at various time points during and after
treatment, and correlating these with the various outcome measures
(Data Supplement Table S3). The following two examples illustrate
emerging insights from these trials.

Circulating sVEGFR1 As Potential Biomarker of

Intrinsic Resistance

In 2009, we found that patients with rectal carcinoma who had
elevated levels of sVEGFR1 before treatment were less likely to benefit
from bevacizumab combined with chemoradiotherapy.91 Now, we
see the same association in patients with newly diagnosed GBM,
triple-negative breast cancer, hepatocellular carcinoma (HCC), and
metastatic colorectal carcinoma (Data Supplement Table S4).87,92-94

Our hypothesis is that sVEGFR1 functions as an endogenous VEGF
trap. Thus, adding external anti-VEGF agent is not likely to have
significant biologic effects in patients with high sVEGFR1 levels. In-
deed, high levels of sVEGFR1 were also associated with fewer adverse
effects in patients with rectal or breast cancer or HCC.93-95 Addition-
ally, a retrospective analysis has shown that a genetic variation in the
VEGFR1 gene correlates with increased VEGFR1 expression and poor
outcome of bevacizumab treatment in patients with metastatic renal
cell carcinoma or pancreatic ductal adenocarcinoma.96 Of course,
these findings need to be tested prospectively.

Normalization of Tumor Microenvironment
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SDF1�/CXCR4 As Potential Evasive Pathway

We found that circulating levels of the chemokine SDF1� in-
crease in patients who evade various anti-VEGF therapies: rectal car-
cinoma with bevacizumab, GBM with cediranib, HCC with sunitinib,
and sarcoma with sorafenib (Data Supplement Table S5).60,93,97-99

Interestingly, the sources of SDF1� are different in each of these
diseases, as is the role of the SDF1�/CXCR4 pathway.100 For example,
in GBM, this pathway seems to facilitate invasion of cancer cells and
co-option of host vessels by invading cancer cells.101 On the basis of
this finding, our collaborator, Dr Patrick Wen, has started a clinical
trial with AMD3100 (an anti-CXCR4 drug) plus bevacizumab in
patients with recurrent GBM (ClinicalTrials.gov identifier:
NCT01339039).

EMERGING INSIGHTS INTO VASCULAR NORMALIZATION

Since 2001, when I formally proposed the normalization hypothesis,
more than 100 studies have demonstrated normalization in a variety
of tumors using both direct and indirect antiangiogenesis agents,
including metronomic chemotherapy.5,102,103 Several new insights
have emerged from these studies.

First, the dose of the anti-VEGF drug matters. As originally hy-
pothesized, vascular normalization is dependent on the dose of anti-
VEGF drug (Fig 4A).2 High doses of anti-VEGF agents could cause
rapid vessel pruning and might not improve the outcome of concur-
rent therapies. High doses may even increase invasion and metastasis,
as seen in a number of preclinical studies. In contrast, lower doses
might improve perfusion and outcome. In fact, in two independent
studies, we found this to be the case with breast cancer in mice.104,105

These data suggest that the 15 mg/kg dose of bevacizumab might have
been too high and responsible for the lack of OS benefit in phase III
breast cancer trials with bevacizumab.106-108 In fact, a recent trial using
a dose of 15 mg/kg resulted in decreased perfusion and uptake of
docetaxel in patients with non–small-cell lung cancer.109

Second, the size of therapeutic agents matters. We have previ-
ously shown that tumor vessels have large holes (pores) in their walls,
and anti-VEGF treatments lower the size of these holes.19,110 An out-
standing question is whether this decrease in pore size would outweigh
the benefits of vascular normalization. Indeed, in a breast cancer
model in mice, we found that VEGFR2 blockade improved the treat-
ment benefit from 10-nm nab-paclitaxel (Abraxane; Abraxis Oncol-
ogy, Los Angeles, CA) but not that from 100-nm liposomal
doxorubicin (Doxil; Janssen Pharmaceuticals, Beerse, Belgium;
Data Supplement Fig S9).105

Third, vascular normalization can improve the outcome of im-
munotherapy. More than a half dozen studies have demonstrated that
vascular normalization can improve the delivery of immune cells into
the tumor and/or convert the immunosuppressive microenviron-
ment of tumors into an immunostimulatory one, presumably by
alleviating hypoxia (Fig 4B).104,111-116 With the recent approval of a
number of immunotherapeutics for cancer and many more in clinical
trials, judicious use of vascular normalizing drugs offers new hope of
improving the modest survival benefit of immunotherapies.117

Fourth, vascular normalization can decrease intravasation of
cancer cells. We had hypothesized that the normalized tumor
vasculature may also inhibit the shedding of cancer cells into the

circulation—a prerequisite for metastasis.3 In an elegant study,
Carmeliet et al118 have now demonstrated this in mice.

Fifth, vascular normalization is also a useful strategy for treating a
number of nonmalignant diseases. Pathologies characterized by ab-
normal vessels afflict more than a half billion people worldwide.4,16

These include wet age-related macular degeneration and diabetic
macular edema—leading causes of blindness. Anti-VEGF agents have
been shown to normalize leaky vessels and control these ocular pathol-
ogies.119 Neurofibromatosis type 2 is another such disease. The blood
vessels of these benign tumors are also abnormal and contribute to
hearing loss in affected patients. My collaborators, Drs Scott Plotkin
and Emmanuelle di Tomaso, demonstrated in a trial involving 10
patients with neurofibromatosis type 2 that normalizing the vessels
with bevacizumab contributed to improved hearing in 60% of partic-
ipants.120 Other emerging applications of vascular normalization in-
clude controlling plaque rupture and mitigating neurovascular
complications stemming from radiation therapy.121,122

NORMALIZATION OF LYMPHATIC VESSELS

So far, I have discussed our attempts to fix the abnormal vasculature
using antiangiogenic agents. As mentioned earlier, all components of
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Fig 4. (A) Normalization window is dose dependent; the higher the dose, the
shorter the window. Higher doses can also lead to adverse effects in normal
tissues. Data adapted.3 (B) Vascular normalization can convert the immunosup-
pressive microenvironment of a tumor to an immunostimultaory microenviron-
ment and improve the outcome of various immunotherapies by increasing flow
and oxygenation. Data adapted.104 TAM, tumor-associated macrophage.
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the tumor microenvironment are abnormal. So even if we normalize
blood vessels, the tumor microenvironment will remain far from
normal. For example, by normalizing tumor vessels, VEGF blockade
lowers tumor IFP in mice and patients, but never to values seen in
normal tissues (Data Supplement Fig S10).57,60,83,93 Our hypothesis is
that the lymphatics within tumors are also dysfunctional and remain
so despite vascular normalization with these treatments.123

Lymphatics play a critical role not only in maintaining fluid
homeostasis in tissues but also in immune response and lymphatic
metastasis.124 To this end, we began investigating lymphatic function
in mice approximately 20 years ago using intravital fluorescence lym-
phangiography (Data Supplement Video S5 [www.jco.org/site/v/
3653/S5.mov]) and more recently using a new imaging technique
that does not require injection of a fluorescent tracer (Figs 5A and
5B).1,128-131 These two distinct approaches have revealed that lym-
phatic vessels in the tumor margin are hyperplastic and functional,
and they are adequate for transporting cancer cells from the tumor to
nearby lymph nodes (Data Supplement Videos S6 [www.jco.org/site/
v/3653/S6.mov] and S7 [www.jco.org/site/v/3653/S7.mov]).58,125,126

However, functional lymphatics are absent within tumors in mice
(Figs 5A and 5B) and humans.58,126,132 Our hypothesis is that forces
generated during tumor progression mechanically compress frag-
ile blood and lymphatic vessels associated with tumors, even from
the early stages of tumorigenesis.30,36,133 In fact, if we deplete
different components of tumors (cancer cells, fibroblasts, collagen,
and/or hyaluronan), both blood and lymphatic vessels open up
(Data Supplement Fig S11).35,36,134 Other investigators have also
shown increased blood perfusion with stroma depletion (reviewed
by Hidalgo and Von Hoff135). Blood begins to flow in previously
compressed blood vessels, but the lymph flow is not resumed in the
decompressed lymphatic vessels.

The pressure gradients generated by the heart drive blood flow in
vessels. In contrast, lymphatic contractions, along with the valves in
the lymphatics, are responsible for normal physiologic lymph flow. So
we examined the lymphatic valves in the tumor margin and the con-
traction of the draining lymphatics. Indeed, the leaflets of the valves
did not fully close, presumably because of hyperplasia in the draining
lymphatics in the tumor margin, and the contractions were abnormal
(Figs 5C and 5D; Data Supplement Video S8 [www.jco.org/site/v/
3653/S8.mov]).127,136 Our current efforts are directed toward restor-
ing normal function in these draining lymphatics to restore fluid
homeostasis and immune response in tumors.

In 2008, my colleague, Dr Dai Fukumura, showed that restoring
nitric oxide (NO) gradients around tumor blood vessels could nor-
malize their function.137-139 If the same principle holds for lymphatics,
restoring NO gradients around the tumor draining lymphatics should
also restore their function (Data Supplement Fig S12). Indeed, we can
restore lymphatic contraction in a model of cutaneous inflammation
by restoring NO gradients (Data Supplement Video S9 [www.jco.org/
site/v/3653/S9.mov]).127 Previously, we demonstrated that blocking
endothelial NO synthase could decrease lymphatic hyperplasia and
prevent lymphatic metastasis (Data Supplement Figs S13 and S14).140

Currently, in collaboration with Drs Timothy Padera, Dai Fukumura,
Lance Munn, and Lei Xu, we are building on these findings to slow
tumor progression and lymphatic metastasis and further improve
treatment outcome by manipulating the function of tumor-associ-
ated lymphatics.

NORMALIZING THE EXTRACELLULAR MATRIX

Even if we were to normalize the function of blood and lymphatic
vessels, the extracellular matrix could still impede drug penetration
and efficacy, especially in highly desmoplastic tumors (eg, pancreatic
ductal adenocarcinomas).135,141 We suspected nearly 30 years ago that
the extracellular matrix could be a barrier when we observed a lack of
penetration of a large molecule (150,000 MW dextran) in some re-
gions of tumors grown in rabbits (Data Supplement Fig S15).8,9 We
sawthesamewhenweintravenouslyadministered90-nmliposomes—
approximately the size of liposomal doxorubicin, an approved nano-
medicine—in tumor-bearing mice (Fig 6A).20 These particles leaked
out of some tumor vessels but did not move far from the vessel wall.
Even 150-nm particles directly injected into a tumor do not move too
far from the injection site (Fig 6B).142

The answer to this riddle came from two developments in our
laboratory. First, Dr Paolo Netti made an unexpected discovery in
2000: Diffusion of macromolecules is low in tumors that are stiff and
collagenous.144 Second, Dr Edward Brown employed second har-
monic generation microscopy to image collagen in vivo.145 By imag-
ing collagen and 150-nm viral particles simultaneously in vivo, we
discovered that fibrillar collagen restricts the movement of these par-
ticles (Fig 6B). And when we coinjected bacterial collagenase with
these particles, the volume of distribution tripled (Data Supplement
Fig S16).142

Because collagen is a structural molecule, we cannot administer
bacterial collagenase systemically. So we searched for antifibrotic
agents that could deplete collagen. Initially, we tested relaxin—a hor-
mone released during pregnancy and known to reorganize collagen
matrices.145 Indeed, 2 weeks of treatment with relaxin reorganized the
collagen matrix in a desmoplastic tumor and increased the penetra-
tion of large molecules (Data Supplement Fig S17).145,146 Although we
did not see any increase in metastasis in our tumor models, others
reported that relaxin could increase metastasis from prostate cancer
in mice.147

We next tried to permeabilize the collagen matrix by employing
enzymes known to degrade collagen I: MMP1 and MMP8.148 The
latter is also known to reduce metastasis. Indeed, ectopic expression of
MMP8 in tumors increased the volume of distribution and efficacy of
gene therapy (Data Supplement Fig S18). Faced with the challenge to
translate this finding, we began a search for US Food and Drug Ad-
ministration–approved antifibrotic agents.

After considering a number of options, we realized that the
widely prescribed angiotensin II receptor blocker (ARB) losartan—
known to reduce collagen production by blocking transforming
growth factor beta activation—could be a potential candidate. In-
deed, losartan treatment for 2 weeks led to a dramatic decrease in
collagen as well as an increase in penetration and accumulation of
100-nm particles in collagen-rich tumors (Figs 6C to 6E).143 And this,
in turn, increased the efficacy of gene therapy and liposomal doxoru-
bicin in desmoplastic tumors (Fig 6F).

It is worth noting that a retrospective analysis has shown that
patients with pancreatic ductal adenocarcinoma receiving ARBs or
angiotensin-converting enzyme inhibitors survive approximately 6
months longer than those who do not (Data Supplement Table S6).149

Similar retrospective analyses have shown increased survival in patients
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with lung and renal cancers treated with ARBs or angiotensin-
converting enzyme inhibitors.150,151 Finally, a prospective phase I
study recently showed that candesartan—another ARB—is safe in

patients with pancreatic ductal adenocarcinoma; it is being fol-
lowed by a phase II trial.152 In parallel, in collaboration with Drs Lei
Xu and Yves Boucher, we have shown that blocking transforming

Normal  valve Malformed valve

A

C

D

B

Fig 5. (A, B) Functional lymphatic vessels are not detected within tumors with two different techniques. (A) Top panel shows functional lymphatic vessels (green) in
a mouse tail. Bottom panel shows the functional lymphatic vessels are absent within a sarcoma growing a mouse tail, but they have a larger diameter in the tumor
margin (arrows). Reproduced from.125 (B) Functional lymphatic vessels (blue) are present around a breast tumor grown orthotopically in a mouse, but they are absent
within the tumor mass. Yellow-red indicates blood vessels. Reproduced from.1 (C) Unlike normal valves (left), the valves in the lymphatic vessels draining a tumor are
malformed (right). Reproduced from.126 (D) Unlike normal contraction and valve (left), both are abnormal in a lymphatic vessel draining a tumor. Data adapted
(unpublished data; Dr Shan Liao).127
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growth factor beta signaling can normalize both blood vessels and
collagen matrix in breast cancer models in mice and improve the
treatment outcome of liposomal doxorubicin (Data Supplement
Figs S19 and S20).153,154

In addition to signaling and obstructing the movement of
drugs, the extracellular matrix—in concert with cancer cells and
fibroblasts—also contributes to the elevated mechanic forces in
tumors.36 These forces are large enough to compress the fragile
blood and lymphatic vessels within tumors. These forces can also
compress the surrounding normal tissues and contribute to mor-
bidity and mortality. In collaboration with Dr Lance Munn, we
have shown that these compressive forces can also directly increase
cancer cell invasion.155 Thus, the tumors seem to use mechanical

forces to aid progression and treatment resistance. We must take
this into account as we develop and test new stroma-depleting
therapeutics in the clinic (Data Supplement Tables S1 and S2).

SUMMARY AND PERSPECTIVE

In summary, our work has demonstrated that blood and lymphatic
vessels as well as the extracellular matrix of tumors are abnormal, and
these abnormalities create a hostile microenvironment. Other stromal
cells, such as activated fibroblasts, macrophages, and other immune
cells, are also part of the abnormal tumor microenvironment.135,156-160

This microenvironment fuels tumor progression, metastasis, and im-
munosuppression and induces a stem-cell phenotype—all of which
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Fig 6. (A) Intravenously administered
90-nm liposomes—approximately the size
of liposomal doxorubicin—were injected
into tumor-bearing mice. These particles
leaked out of some tumor vessels but did
not move far from the vessel wall. Repro-
duced from.20 (B) Similarly, 150-nm viral
particles injected into a tumor do not
move far from the injection site. Repro-
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in turn, increased the efficacy of gene
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contribute to treatment resistance. Normalization of blood vessels and
matrix can alleviate some of these problems, not only in mice but also
in patients. Crucially, in two brain tumor trials, patients whose tumor
blood perfusion increased survived longer than those whose tumor

perfusion did not increase.
These exciting discoveries notwithstanding, great challenges re-

main ahead of us. Perhaps the biggest unmet need is improving anti-
metastasis therapies. Here, the disparity between preclinical and
clinical research in antiangiogenesis remains profound. Most preclin-
ical studies have been performed on primary tumors; only a handful
have occurred in the metastatic or adjuvant setting that recapitulates
the clinical situation. Even in these studies, the dose of antiangiogenic
agent used is high compared with that in the clinical setting. Thus, it is
not surprising that the resulting hypoxia may enrich for cancer stem
cells or increase metastasis. In our own limited adjuvant studies with
two different VEGFR tyrosine kinase inhibitors at lower doses, we
have not detected an increase in metastasis—an observation consis-
tent with clinical trials (Data Supplement Fig S14).161,162 In addition,
with improved systemic therapy, there is an alarming increase in
incidence of brain metastasis, regarded as the last frontier in the war
against cancer.21,163 Our recent work using a VEGFR2-blocking anti-
body combined with trastuzumab and lapatinib has shown a dramatic
effect in an experimental model of brain metastasis of human epider-
mal growth factor receptor 2–positive breast cancer (Data Supple-
ment Fig S21).164 This finding needs to be tested in the clinic.

Although our work has focused on vascular normalization, we
are cognizant of other potential mechanisms of benefit from antian-
giogenesis alone or when combined with chemotherapy.165,166 These
include killing both endothelial and cancer cells by antiangiogenics
(eg, PlGF/Nrp1 antibodies in medulloblastoma or ramucirumab in
gastric and liver cancers).167-169 Antiangiogenic agents may also sen-
sitize endothelial cells to cytotoxic drugs and impair the recruitment of
bone marrow–derived cells that can differentiate to endothelial cells
or release proangiogenic molecules. Finally, cytotoxic agents may kill

stromal cells.77,170 Although all these mechanisms have been previ-
ously examined in preclinical models, their roles in progression-free
survival and OS need to be carefully investigated in patients.166 Spe-
cific changes in biomarkers may inform these mechanisms.88

In terms of biomarkers, our work suggests that patients who have
elevated pretreatment levels of plasma sVEGFR1 are not likely to
benefit from anti-VEGF therapies, and increased levels of SDF1� seem
to correlate with escape from anti-VEGF therapies. Other evasive
pathways emerging from preclinical and clinical studies include Ang2
and cMET.16,89,90,97,171-173 These biomarkers and pathways need to be
tested prospectively.88 With the discovery of biomarkers to identify
appropriate patients, the survival advantage from antiangiogenic
drugs is likely to be comparable to that from other targeted drugs
(Data Supplement Tables S1 and S2).
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GLOSSARY TERMS

Angiotensin II receptor blocker (ARB): Blocks the
effect of angiotensin II, a chemical that narrows blood vessels,
and thus helps widen blood vessels to allow blood to flow more
easily, which lowers blood pressure. ARBs, at the present time,
are generally prescribed when one cannot tolerate an
angiotensin-converting enzyme (ACE) inhibitor to lower blood
pressure.

Desmoplastic: Refers to growth of dense connective tissue or
stroma by transformation of fibroblastic-type cells to a myofibro-
blastic phenotype that stain positive for smooth-muscle actin.
Furthermore, an increase in total fibrillar collagens, fibronectins,
proteoglycans, and tenascin C is distinctive of the desmoplastic
stromal response in several forms of cancer.

Genetically engineered mouse: Mouse model in which
the genetic makeup of the mouse has been modified by trans-
genic or gene-targeting technologies to affect expression of a gene
of interest or to express a mutant.

Interstitial fluid pressure: The pressure exerted by the free
interstitial fluid in a tissue, which is nearly zero mmHg in most
normal tissues, but much higher in tumors because of leaky
blood vessels. Interstitial fluid pressure cannot permanently col-
lapse leak vessels.

Nanomedicine: Collectively refers to application of nanotechnology
to medicine, including the use of nanomaterials for drug delivery to
tumors and nanoelectronic biosensors. Delivery of effective amounts of
drugs with current nanomedicine remains a challenge for this field. One
nanometer is one millionth of a millimeter.

Solid stresses: The stresses exerted by the solid components of a
tissue and accumulated within solid structural components (ie, cancer
and stromal cells, collagen, and hyaluronan) during growth and pro-
gression. Solid stress is elevated in tumors because of growth and is in-
dependent of the high interstitial fluid pressure.

Stromal cells: Refers to the noncancer cells in tumors. The stroma is
distinct from the parenchyma, which consists of the key functional ele-
ments of an organ.

sVEGFR1: Soluble form of VEGF receptor 1 (also known as sFlt-1), a
truncated version of the cell membrane–spanning VEGFR1, can bind to
circulating VEGF and PlGF.

Vascular normalization: The process whereby genetic or phar-
macologic approaches result in pruning and/or remodeling of abnormal
tumor vessels, which become closer to normal tissue vasculature in
terms of structure and function.
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