

# Association of Genetic Polymorphisms and Disease Outcome of Metastatic Renal Cell Cancer In Patients Treated with VEGF Targeted Agents



Fabio A. B. Schutz; Kathryn P. Gray; Mark M. Pomerantz; Michael B. Atkins; Michelle S. Hirsch; David F. McDermott; Megan E. Lampron; Andrew Percy; Mary Gwo-Shu Lee; Jonathan E. Rosenberg; Sabina Signoretti; Philip W. Kantoff; Matthew L. Freedman; and Toni K. Choueiri.

Dana-Farber/Harvard Cancer Center, Boston, MA, USA

#### **OBJECTIVE**

 To evaluate the association of germline polymorphisms and the outcome of patients with metastatic renal cell cancer (mRCC) treated with VEGF targeted therapy.

## **BACKGROUND**

- We have previously demonstrated that germline polymorphisms are associated with the risk of recurrence in patients with localized RCC. (Schutz et al., ASCO 2011:Abstr 4506).
- We hypothesized that gene polymorphisms in critical signaling pathways mighty impact the outcome of metastatic renal cell cancer (mRCC) patients (pts) treated with VEGF-targeted agents.

### **METHODS**

- A prospective observational study for germline genetic polymorphisms analysis
- Histologically-proven RCC patients with European-American ancestry were selected from Dana-Farber/Harvard Cancer Center.
- All patients had documented locally advanced or metastatic disease.
- All patients were treated with approved VEGF targeted agents: sunitinib, sorafenib, pazopanib or bevacizumab.
- Consent was collected from RCC patients for blood collection and DNA analysis
- Full baseline clinical and pathological data and follow-up data were prospectively collected
- 113 single nucleotide polymorphism (SNP) from 13 genes were selected based on their potential involvement in RCC pathogenesis, VEGF targeted therapy pharmacodynamics or charmacokinetics: VEGFR2, HIF1A, HIF1B, HIF2A, VEGF, GLUT1, ABCB1, ABCG2, CYP3A4, CYP3A5, as well as the top 5 SNPs potentially associated with RCC recurrence in our previous study
- Tagging SNPs were selected from the HapMap database (V.2)
- Minimum allele frequency (MAF) of 5%
- Minimum pairwise correlation coefficient (r<sup>2</sup>) of 80%
- Statistical analysis:
- Progression free survival (PFS): time from start of VEGF targeted therapy to deasese progression or death.
- Cox Proportional Hazards (PH) regression model evaluates the association between individual SNP and PFS
- Univariate analysis (log-rank test) to identify SNPs potentially associated with PFS
- $\bullet$  Controlling for multiple comparisons using FDR measure (Storey's Q-value, with cutoff  $<\!\!20\%)$
- Multivariate Cox PH model adjust for age, gender and clinical risk categories by MSKCC risk criteria.
- •Kaplan Meier estimates the distribution of PFS by genotype variants.

#### Table 1. Baseline patient and cohort characteristics (n=263).

| Characteristic             |                 | TOTAL (n=263)    |  |
|----------------------------|-----------------|------------------|--|
| PFS (months)               | Median (95% CI) | 11.5 (9.4-13.2)  |  |
| Age (years)                | Median (range)  | 60.2 (25.9-88.2) |  |
| Gender                     | Male            | 185 (70%)        |  |
| ECOG PS                    | 0               | 125 (51%)        |  |
|                            | 1               | 94 (38%)         |  |
|                            | ≥2              | 26 (11%)         |  |
| Histology                  | Clear cell      | 222 (90%)        |  |
|                            | Other           | 26 (10%)         |  |
| Previous Nephrectomy       | Yes             | 236 (90%)        |  |
| Number of metastatic sites | 1               | 72 (28%)         |  |
|                            | 2               | 81 (31%)         |  |
|                            | 3               | 73 (28%)         |  |
|                            | ≥4              | 35 (13%)         |  |
| Prior therapy              | Yes             | 108 (42%)        |  |
|                            | No              | 152 (58%)        |  |
| VEGF targeted therapy      | Sunitinib       | 140 (53%)        |  |
|                            | Other           | 123 (47%)        |  |
| Heng risk score            | Favorable       | 45 (17%)         |  |
|                            | Intermediate    | 95 (36%)         |  |
|                            | Poor            | 61 (23%)         |  |
|                            | Unknown         | 62 (24%)         |  |
| MSKCC risk score           | Favorable       | 82 (31%)         |  |
|                            | Intermediate    | 101 (38%)        |  |
|                            | Poor            | 75 (29%)         |  |
|                            | Unknown         | 5 (2%)           |  |

Table 2. SNPs that were significantly associated with PFS with Logrank p-value < 0.05.

| PFS (event rate=81%) |            |                  |                |  |  |
|----------------------|------------|------------------|----------------|--|--|
| Gene                 | SNP Id     | Log-rank p-value | Q-value (pFDR) |  |  |
| VEGFR2               | rs2305948  | 0.002906         | 0.165121       |  |  |
| HIF2A                | rs11687512 | 0.002923         | 0.165121       |  |  |
| VEGFR2               | rs7654599  | 0.01311          | 0.493814       |  |  |
| GLUT1                | rs3768042  | 0.022251         | 0.542561       |  |  |
| VEGFR2               | rs4576072  | 0.032208         | 0.542561       |  |  |
| TNF                  | rs3093662  | 0.03527          | 0.542561       |  |  |
| VEGF                 | rs10434    | 0.045697         | 0.542561       |  |  |
| VEGFR2               | rs2305949  | 0.047045         | 0.542561       |  |  |
| VEGF                 | rs3025030  | 0.04885          | 0.542561       |  |  |
| GLUT1                | rs841853   | 0.049173         | 0.542561       |  |  |

#### **RESULTS**

Table 3. Characteristics of the 2 selected SNPs in VEGFR2 and HIF2A.

| Gene   | SNP Id           | Minor homozygote | Heterozygote | Common homozygote | MAF  |
|--------|------------------|------------------|--------------|-------------------|------|
| VEGFR2 | rs2305948 (C>T)  | 0.01             | 0.16         | 0.83              | 0.09 |
| HIF2A  | rs11687512 (G>C) |                  | 0.06         | 0.94              | 0.03 |

Table 4. Unadjusted and adjusted Cox PH model results of PFS endpoint by the 2 SNPs.

|          |                  |          |       |          |            |                           |       | MSKCC risk criteria     |       |
|----------|------------------|----------|-------|----------|------------|---------------------------|-------|-------------------------|-------|
| Gene     | SNP Id           | Genotype | Event | Patients | mPFS (mo.) | Unadjusted HR<br>(95% CI) | P     | Adjusted HR<br>(95% CI) | P     |
| VEGFR2   | rs2305948 (C>T)  | TC+TT    | 28    | 43       | 19.2       | 0.55 (0.37-0.82)          | 0.003 | 0.56 (0.37-0.84)        | 0.005 |
|          |                  | CC       | 180   | 213      | 10.1       | Ref.                      |       | Ref.                    |       |
| HIF2A rs | rs11687512 (G>C) | GC       | 9     | 15       | 26.5       | 0.36 (0.17-0.72)          | 0.003 | 0.33 (0.16-0.68)        | 0.002 |
|          |                  | GG       | 203   | 246      | 10.6       | Ref.                      |       | Ref.                    |       |

Figure 1. Kaplan-Meier plots of progression free survival by SNP variant in VEGFR2 and HIF2A genes.



### **CONCLUSIONS**

- 1. Inherited variants may influence the PFS of patients with metastatic RCC treated with VEGF targeted agents.
- 2. Further validation of these findings is required.
- 3. If validated, these results could help identifying subset of patients that are more likely to remain progression free on treatment with VEGF targeted therapies.