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Introduction

Clear cell renal cell carcinoma (ccRCC) afflicts upwards of 
50,000 patients annually.1 Most of these patients will pres-
ent initially with localized disease, managed with surgery, 
but unfortunately, nearly a third will develop recurrence 
and succumb to their disease. ccRCC incidence has 
increased uniformly over the past 30 years, associated with 
stage migration toward lower stages, likely due to the 
increased detection of lesions incidentally. However, there 
has not been commensurate improvement in survival. 
ccRCC tumors have variable natural histories, and genetic 
strategies have been largely unhelpful in identifying patients 
with higher or lower risk for recurrence due to the over-
whelming association of this cancer with von Hippel– 
Lindau (VHL) tumor suppressor gene inactivation.2,3

The Fuhrman classification system stratifies ccRCC by 
tumor cell morphology: low-grade (grade 1), intermediate-
grade (grades 2 and 3), and high-grade (grade 4) tumors, 
with corresponding association with RCC-related death.4 
Prognostic scoring systems such as the UCLA Integrated 
Staging System (UISS) have been developed using these 
morphologic characteristics, tumor size, and patient perfor-
mance status as well as the inherent characteristics of stage 
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Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even within this classification, the natural history is heterogeneous and 
difficult to predict. A sophisticated understanding of the molecular features most discriminatory for the underlying tumor heterogeneity should be 
predicated on identifiable and biologically meaningful patterns of gene expression. Gene expression microarray data were analyzed using software that 
implements iterative unsupervised consensus clustering algorithms to identify the optimal molecular subclasses, without clinical or other classifying 
information. ConsensusCluster analysis identified two distinct subtypes of ccRCC within the training set, designated clear cell type A (ccA) and B (ccB). 
Based on the core tumors, or most well-defined arrays, in each subtype, logical analysis of data (LAD) defined a small, highly predictive gene set that could 
then be used to classify additional tumors individually. The subclasses were corroborated in a validation data set of 177 tumors and analyzed for clinical 
outcome. Based on individual tumor assignment, tumors designated ccA have markedly improved disease-specific survival compared to ccB (median 
survival of 8.6 vs 2.0 years, P = 0.002). Analyzed by both univariate and multivariate analysis, the classification schema was independently associated with 
survival. Using patterns of gene expression based on a defined gene set, ccRCC was classified into two robust subclasses based on inherent molecular 
features that ultimately correspond to marked differences in clinical outcome. This classification schema thus provides a molecular stratification applicable 
to individual tumors that has implications to influence treatment decisions, define biological mechanisms involved in ccRCC tumor progression, and direct 
future drug discovery.
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and nodal status.5,6 Other algorithms incorporate postopera-
tive clinical information but have limited discriminative 
ability for the abundant intermediate-grade and intermediate-
stage tumors, and they fail to account for molecular distinc-
tions in tumors.7 The molecular basis of this diversity in 
clinical behavior is unclear and makes ccRCC a ripe target 
for investigating the nature of these heterogeneities.

Gene expression analyses have provided meaningful 
insight into the clinical heterogeneity of many solid tumors. 
Unsupervised clustering of gene expression data with 
supervised learning methods can provide powerful strate-
gies to identify molecularly and clinically significant can-
cer subtypes.8-11 New unsupervised consensus ensemble 
clustering strategies have been developed that have suc-
cessfully identified breast cancer subtypes correlated with 
significant differences in risk for recurrence.12-15

In ccRCC, using traditional unsupervised gene expres-
sion analysis, we and others have demonstrated that two or 
more molecular subclassifications of this tumor type 
exist.16-20 Many prior investigations, however, have relied 
on preselected molecular features or clinical outcomes as 
the criteria to identify expression signatures and distinguish 
gene sets. This type of approach fails to permit the underly-
ing tumor biology, through the molecular end products of 
genetic changes, to inform the formation of tumor sub-
groups. A robust molecular classification system that con-
nects tumor biology with individual tumor behavior should 
identify a priori the inherent patterns of gene expression 
that classify samples into nonoverlapping sets with a high 
degree of accuracy.

To investigate the molecular features that best define 
subsets of renal cell carcinoma, we applied unsupervised 
consensus clustering to the gene expression data of ccRCC 
tumors, without applying biologic or clinical information. 
Two robust subtypes (we have designated ccA and ccB) 
with differentiating biological signatures could be distin-
guished using a small gene set defined by logical analysis 
of data (LAD). This gene set allows for assignment of indi-
vidual tumors within the ccA/ccB classification scheme and 
is easily translatable to reverse transcription PCR (RT-PCR) 
technology. Validation in an independent data set demon-
strated that ccA tumors have a markedly better prognosis 
than ccB and that the molecular subtype was significantly 
associated with survival in both univariate and multivariate 
analysis. The identification of two robust ccRCC sub-
classes, which can be assigned by a small but highly signifi-
cant panel of gene features, will provide a biological 
resource for future ccRCC investigation, allow better prog-
nostication of ccRCC, and supply a wealth of information 
for therapeutic decisions.

Results
Identification of ccRCC subtypes. Gene expression data 

were obtained for 48 ccRCC samples and 3 independent 

replicate sample preparations. A flowchart diagram depict-
ing the analyses performed is presented in Figure 1.

First, we performed ConsensusCluster, an unsupervised 
ensemble clustering algorithm, on the ccRCC samples 
(Supplementary Table S1), yielding two subsets, designated 
ccA and ccB (Fig. 2A). Removing the independent repli-
cates produced an identical clustering assignment of tumors 
(data not shown), further confirming the stability of these 
clusters. Neither cluster was caused by inclusion of normal 
tissue in the RNA extraction as normal kidney assorts inde-
pendently of either cluster (Supplementary Fig. S2).

Representative samples within each cluster were used 
for the development of characteristic gene signatures and 
the decipherment of biological pathways. Samples whose 
membership shifted through multiple bootstrapped itera-
tions were set aside for later classification. These “core” 
clusters included 39 of the original 51 samples and permit-
ted tumors with best-patterned features to define the cluster. 
As Figure 2B shows, the core cluster samples split into two 
robust subtypes of ccRCC that are stable when k (degrees of 
freedom) increases to k = 3 or k = 4 (Fig. 2 C and D), sug-
gesting that the optimal number of robust clusters in this 
data set is 2. These analyses demonstrate that ccRCC can be 
optimally clustered into two distinct subtypes (ccA and 
ccB), defined purely by molecular characteristics of the 
tumors.

Analysis of pathway differences between two core clusters. 
The identification of subtypes provides an opportunity to 
identify biological differences within the spectrum of 
ccRCC. SAM (Significance Analysis of Microarrays) anal-
ysis identified 2,701 and 3,512 probes overexpressed in 
ccA and ccB, respectively (Fig. 3A and Supplementary 
Table S3). This result confirms the gene expression profile 
heterogeneity observed in previous studies.17-19,21 The func-
tional classification program, DAVID, was used to func-
tionally categorize the probes identified in our analysis. A 
demonstration of the gene ontologies and pathways found 
to be differentially regulated between ccA and ccB tumors 
is provided in supplementary material (Supplementary 
Table S3). In addition, SAM Gene Set Analysis, a more sta-
tistically robust way of identifying correlated gene groups, 
was performed using curated gene sets, providing similar 
results (Supplementary Table S4). The most notable genes, 
gene sets, and gene ontologies associated with cluster ccA 
were involved in angiogenesis (Fig. 3B), the beta-oxidation 
pathway (Fig. 3C), organic acid metabolism, fatty acid 
metabolism (Fig. 3D), and pyruvate metabolism. In con-
trast, core cluster ccB tumors overexpressed genes associ-
ated with cell differentiation, epithelial to mesenchymal 
transition (EMT) (Fig. 3E), the mitotic cell cycle, trans-
forming growth factor beta (TGFβ; Fig. 3F), response to 
wounding, and Wnt targets (Fig. 3G).

Delineation of a gene set to stratify ccRCC into ccA and  
ccB. To identify a feature panel that could accurately iden-
tify ccA and ccB tumors, we used LAD, which uses pattern 
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recognition and supervised learning to identify key discrim-
inating elements and has been successfully implemented in 
several biomedical studies.13,14,22 Using the core ccA and 
ccB tumors, LAD patterns were identified and validated. 
Using these patterns, we identified 120 probes, consisting 
of 110 genes, valuable for cluster assignment (Fig. 4A, 
Table 1, and Supplementary Table S5). The LAD model 
(Supplementary Table S6) was applied to the 12 noncore 
samples from the original analysis and predicted cluster 
membership for 11 samples, 8 ccA and 3 ccB (Supplemen-
tary Table S7).

To confirm that the genes identified by LAD are differ-
entially expressed ccA and ccB ccRCC subtypes within 
individual tumors, we tested primers for ccA overexpressed 
genes FLT1, FZD1, GIPC2, MAP7, and NPR3 on available 
tumor samples using semi-quantitative RT-PCR. Figure 4B 
demonstrates that each of these products can predict tumor 

classification for individual tumors. These results collec-
tively indicate the potential for a limited gene set to cor-
rectly distinguish between the two ccRCC subtypes using 
RT-PCR, a platform immediately transferable to formalin-
fixed, paraffin-embedded tissues.

Validation of ccRCC subtypes. To validate the presence of 
two ccRCC subtypes in a second, independent data set, we 
applied ConsensusCluster and the LAD probe set to 177 
ccRCC microarrays generated using a different gene 
expression profiling technique.17 Figure 5 shows the same 
two strong clusters in the data, which remained stable when 
k was increased (data not shown). The clusters were 
assigned to ccA or ccB by comparison of gene expression 
patterns to those in the primary data set.

Assignment of individual tumors. Assignment of tumors to 
a subtype with Cluster3.0 (traditional heat maps) or Con-
sensusCluster requires the presence of other tumors. 

A

B

48 clear cell tumors, 3 replicates

12 noncore arrays

39 Core arrays
(36 tumors, 3 replicates); Fig 2

39 Core arrays
(36 tumors, 3 replicates)

Biological analysis; Fig 3 LAD analysis; Fig 4

Apply to Zhao et al;
Fig 5

SAM analysis SAM gene set 
analysis

Predictive
gene set

DAVID Survival analysis
Fig 6

RT-PCR
validation

8 ccA 3 ccB1 mixed15 ccB arrays
(14 tumors, 1 replicate)

24 ccA arrays
(22 tumors, 2 replicates)

ConsensusCluster
Set aside noncore arrays

LAD assignment

Figure 1.  Flowchart diagram depicts the order of analyses. (A) Delineation of steps taken to identify clear cell renal cell carcinoma (ccRCC) subtypes. 
(B) Diagram of analyses to characterize and validate identified subtypes.
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Therefore, we used LAD score to separately assign each 
individual tumor in the validation data set to ccA or ccB, 
without assessing similarity to the rest of the tumors. 
Assignment was predicted for each sample 100 times with 
80% pattern bootstrapping. A tumor was classified only if 

the assignment occurred in >75% of the prediction runs. Of 
the 177 ccRCC tumors, 83 were predicted to be ccA, 60 as 
ccB, and 34 remained unclassified with these stringent clas-
sification rules (Supplementary Table S8). When compared 
with the cluster assignment predicted by ConsensusCluster, 

Figure 2.  Consensus matrixes demonstrate the presence of only two core clusters of clear cell renal cell carcinoma (ccRCC). Consensus matrix heat 
maps demonstrate the presence of two clusters within all clear cell tumors (A) and invariance of the two ccRCC core clusters using (B) k = 2, (C) k = 
3, and (D) k = 4 cluster assignments for each cluster method. Red areas identify the similarity between samples and display samples clustered together 
across the bootstrap analysis. ccA is color coded in green, ccB in blue.
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Figure 3.  Pathway analysis of subtypes shows that ccA and ccB are highly dissimilar. (A) Heat map of the 6,213 probes differentially expressed between 
ccA and ccB as determined by SAM analysis; false discovery rate (FDR) < 0.000001. (B-G) Magnified heat maps of the genes from (A) that populate the 
ccA (B-D) or ccB (E-G) overexpressed Molecular Signatures Database curated gene sets of Brentani angiogenesis (B), beta-oxidation (C), HSA00071 
fatty acid metabolism (D), epithelial to mesenchymal transition (EMT) up (E), transforming growth factor beta (TGFβ) C4 up (F), and Wnt targets (G).
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we found a concordance of over 86%, thus validating LAD-
predicted assignment as a sensitive measure of tumor 
assignment.

VHL pathway analysis. With the ability to assign individ-
ual tumors to ccA or ccB, we were able to further investi-
gate an intriguing aspect of our pathway analysis. We had 
found that several of the pathways overexpressed in ccA 
tumors are typically considered as being perturbed in 
ccRCC (i.e., angiogenesis is considered a defining feature 
of ccRCC). A number of genes (e.g., EPAS1, EGLN3, 
PDGFC, HIG2, and CA9) tightly correlated with aspects of 
VHL inactivation and hypoxia inducible factor (HIF) sig-
naling were found to be overexpressed in ccA relative to 
ccB.

We applied LAD analysis to our previously published 
data set23 that was well annotated for VHL inactivation. Of 
the 21 tumors, 10 were predicted to be ccA, 6 as ccB, and 5 
as unclassified (Supplementary Table S9). In each category, 
there were VHL wild-type tumors, HIF1 and HIF2 overex-
pressing tumors, and HIF2-only overexpressing tumors. 
Our own analysis of VHL status also demonstrated the pres-
ence of VHL mutations and/or methylation in both the ccA 
and ccB clusters (Supplementary Table S1). These data sug-
gest that ccA and ccB, despite having a similar frequency of 

VHL inactivation, have activation of different dominant 
biologic pathways, resulting in distinct patterns of gene 
expression.

ccA and ccB have different survival outcomes. Given that 
VHL is inactivated in tumors of both subtypes, we wanted 
to know whether the underlying differences in tumor biol-
ogy would show survival differences. Cancer-specific sur-
vival and overall survival for the ccA and ccB classes from 
the 177 tumor validation set were plotted using Kaplan-
Meier curves (Fig. 6 A and B), calculating 95% confidence 
intervals (Supplementary Table S10). For cancer-specific 
survival (Fig. 6A), the ccA subtype was associated with a 
highly significant survival advantage over ccB patients (P = 
0.0002, median survival of 8.6 vs 2 years). At 5 years,  
cancer-specific survival was 56% in ccA patients and only 
29% in ccB patients. Figure 6B shows the same trend for 
overall survival, with a significantly greater survival for 
ccA patients over ccB patients (P = 0.004, median survival 
of 4.9 vs 1.8 years). At 5 years, survival for ccA patients is 
48% but only 23% for ccB patients.

ccA/ccB subtype associates with clinical variables. Fuhrman 
grade, tumor size (T stage), and performance status, the 
covariates in the UISS for predicting outcome in newly 
diagnosed patients,5 were evaluated and compared with our 

Figure 4. Logical analysis of data (LAD) probes separate ccA and ccB tumor clusters. (A) Gene expression data for core arrays and 120 LAD probes. 
These probes were selected using LAD and leave-one-out analysis from 1,075 distinguishing probes with P value <0.000001. (B) Semi-quantitative reverse 
transcription PCR validates the ability of a subset of the LAD probes to clearly distinguish between ccA and ccB tumors.
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Table 1.  Logical Analysis of Data (LAD) Gene Set

Subtype Agilent Probe ID Symbol Fold change

ccA A_23_P89799 ACAA2 4.159
ccA A_24_P234242 ACADL 2.712
ccA A_23_P24515 ACAT1 2.795
ccA A_23_P52127 ACBD6 1.516
ccA A_23_P134953 ADFP 3.951
ccA A_23_P135454 AFG3L2 2.247
ccA A_23_P129896 ALDH3A2 3.327
ccA A_23_P417974 AQP11 2.899
ccA A_23_P256084 ARSE 3.24
ccA A_23_P86900 B3GNT6 2.41
ccA A_23_P133923 BAT4 1.706
ccA A_23_P134925 BNIP3L 2.503
ccA A_23_P150350 C11orf1 2.47
ccA A_23_P368718 C13orf1 2.483
ccA A_24_P116233 C13orf1 2.081
ccA A_23_P60259 C9orf87 4.427
ccA A_23_P161719 CWF19L2 1.598
ccA A_23_P147397 DNCH2 2.023
ccA A_24_P112984 DREV1 2.161
ccA A_23_P143484 DSCR5 2.553
ccA A_24_P343621 ECHDC3 3.653
ccA A_23_P119753 EHBP1 2.003
ccA A_23_P87964 ESD 1.661
ccA A_23_P118300 FAHD1 2.671
ccA A_32_P93852 FAM44B 2.147
ccA A_32_P213861 FBI4 2.75
ccA A_32_P116271 FBI4 2.02
ccA A_23_P41437 FLJ11200 2.149
ccA A_23_P904 FLJ11588 2.2
ccA A_23_P5742 FLJ13646 1.997
ccA A_23_P58676 FLJ14054 9.81
ccA A_23_P160433 FLJ14146 3.067
ccA A_23_P165548 FLJ14249 2.159
ccA A_24_P139943 FLJ14249 1.89
ccA A_23_P203751 FLJ22104 3.108
ccA A_24_P181101 FLJ22104 2.885
ccA A_32_P197942 FLJ23834 2.499
ccA A_24_P576191 FLT1 3.07
ccA A_24_P38276 FZD1 3.116
ccA A_24_P942370 GALNT4 1.804
ccA A_24_P72064 GHR 3.943
ccA A_23_P34478 GIPC2 5.447
ccA A_24_P100301 GIPC2 4.163
ccA A_23_P147296 HIRIP5 2
ccA A_23_P253982 HOXA4 3.165
ccA A_24_P218805 HOXC10 2.467
ccA A_23_P363936 HSPA4L 2.339
ccA A_23_P210176 ITGA6 2.15
ccA A_23_P24948 KCNE3 2.633
ccA A_24_P944541 KIAA0436 2.394
ccA A_23_P29185 KIAA1043 1.876
ccA A_32_P100683 KIAA1648 1.897
ccA A_23_P215931 LEPROTL1 2.579
ccA A_24_P252846 LOC119710 2.167
ccA A_23_P144668 LOC134147 3.346
ccA A_23_P206899 LOC57146 2.685
ccA A_23_P337464 LOC90624 2.03
ccA A_23_P85008 MAOB 3.677
ccA A_32_P190416 MAP7 3.598
ccA A_24_P224488 MAPT 4.959
ccA A_23_P207699 MAPT 3.428
ccA A_23_P341392 MGC32124 1.938

Subtype Agilent Probe ID Symbol Fold change

ccA A_23_P83976 MGC33887 2.095
ccA A_23_P115955 MRPL21 1.605
ccA A_32_P77989 NETO2 4.082
ccA A_23_P138686 NMT2 2.369
ccA A_23_P253536 NPR3 7.48
ccA A_23_P327451 NPR3 7.362
ccA A_23_P414978 NUDT14 2.408
ccA A_23_P10442 OSBPL1A 2.354
ccA A_24_P124349 PDGFD 3.585
ccA A_23_P115919 PHYH 2.62
ccA A_23_P211598 PMM1 1.897
ccA A_23_P52109 PRKAA2 2.832
ccA A_24_P201404 PTD012 3.632
ccA A_24_P97785 PURA 2.179
ccA A_24_P93624 RAB3IP 3.301
ccA A_23_P96420 RBMX 1.558
ccA A_23_P203023 RDX 1.988
ccA A_23_P428738 RNASE4 3.083
ccA A_23_P144807 SETP8 2.232
ccA A_23_P216468 SLC1A1 4.695
ccA A_23_P56810 SLC4A1AP 1.339
ccA A_32_P358887 SLC4A4 3.022
ccA A_32_P167791 ST13 1.644
ccA A_32_P85676 STK32B 3.508
ccA A_23_P34375 TCEA3 2.726
ccA A_23_P34376 TCEA3 2.904
ccA A_24_P327886 TCEA3 2.967
ccA A_23_P40611 TCN2 2.657
ccA A_23_P58538 TIGA1 3.288
ccA A_23_P29922 TLR3 4.409
ccA A_23_P373819 TUSC1 2.817
ccA A_32_P133884 TUSC1 2.883
ccA A_24_P167052 YME1L1 1.46
ccA A_23_P48705 ZADH1 3.082
ccB A_24_P73577 ALDH1A2 0.333
ccB A_23_P160729 AP4B1 0.624
ccB A_23_P101380 B3GALT7 0.456
ccB A_23_P50477 BCL2L12 0.609
ccB A_23_P19182 C5orf19 0.262
ccB A_23_P49155 CDH3 0.201
ccB A_23_P2181 CYB5R2 0.408
ccB A_23_P380266 FLJ23867 0.447
ccB A_23_P19102 GALNT10 0.356
ccB A_32_P170206 IMP-2 0.245
ccB A_24_P262543 KCNK6 0.551
ccB A_23_P67529 KCNN4 0.35
ccB A_23_P102622 MATN4 0.317
ccB A_23_P8649 MGC40405 0.499
ccB A_32_P104825 NCE2 0.618
ccB A_23_P52298 NPM3 0.517
ccB A_23_P87238 SAA4 0.293
ccB A_23_P91230 SLPI 0.19
ccB A_23_P46390 SYTL1 0.348
ccB A_24_P82880 TPM4 0.469
ccB A_24_P37540 TTLL3 0.415
ccB A_23_P92860 UNG2 0.283
ccB A_24_P291598 USP4 0.507
ccB A_24_P937119 ZNF292 0.303

Probes identified through LAD to discriminate between ccA and ccB 
subtypes. All probes were significant at t test, P < 0.000001. Fold change 
was calculated as ccA/ccB. Full names, Unigene cluster IDs, and GenBank 
accession numbers are available in Supplementary Table S5.

Table 1 (continued)
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molecular classification 
with regard to survival out-
comes. As expected, 
molecular classification 
strongly associated with 
tumor stage (P = 0.009) and 
grade (P = 0.0007) but not 
performance status (P = 
0.5684). Seventy-eight per-
cent of grade 1 and 69% of 
stage 1 tumors clustered as 
ccA, while 65% of grade 4 
and 58% of stage 4 tumors 
clustered as ccB tumors. As 
low-grade ccRCC tumors 
tend to have better progno-
sis and high-grade tumors 
poor prognosis,4 this result 
was expected. This obser-
vation also suggests that 
the biological characteris-
tics responsible for grade 
and stage-specific progno-
sis in ccRCC are encom-
passed in the classification 
schema. Figure 6C demon-
strates that the ccA/ccB 
subtype still significantly 
correlates with survival 
when limiting analysis to 
intermediate-grade (grades 
2-3) tumors. As expected, a 
Kaplan-Meier curve lim-
ited to the highly aggres-
sive grade 4 tumors shows 
a convergence of subtype-
specific survival (Fig. 6D).

Molecular classification is 
independently associated with 
survival. To determine how 
our classification schema 
compares with current standard clinical parameters as a 
prognostic factor, univariate Cox regression analyses were 
performed (Table 2). Molecular subtype is strongly associ-
ated with survival, with a hazard ratio (HR) of 2.2 (P = 
0.0003). Even in the absence of stage 4 (metastatic) tumors, 
subtype has a strong association with survival (HR = 2.143, 
P = 0.0233). In addition, the use of the Schwartz Bayesian 
criterion (SBC) suggests24 that whether the tumor is classi-
fied by ccA/ccB/unclassified, ccA/ccB, or LAD score, the 
measures are strongly associated with survival, with differ-
ence in adjusted SBC values of 8, 8.3, and 9, respectively. 
These results suggest that defining a tumor as ccA or ccB 

may be an important prognostic indicator for predicting 
outcome from patients with ccRCC.

Multivariate analyses were then performed to deter-
mine whether our classification schema was still indepen-
dently associated with survival outcomes in the context of 
stage, grade, and performance status. The dichotomous 
classification of ccA/ccB provides a significant associa-
tion with survival at the 0.1 level (P = 0.089), likely influ-
enced by the smaller sample size of the 143 classified 
tumors. Increasing sample size to 177 by including 
unclassified tumors, the trichotomous classification 
increased significance to P = 0.0736. Statistical analyses 

Figure 5. Validation of logical analysis of data (LAD) probes in the validation data set show the existence of two 
clear cell renal cell carcinoma (ccRCC) clusters. Consensus matrix of 177 ccRCC tumors determined by 111 
probes corresponding to the 120 LAD probes. Red areas identify samples clustered together across the bootstrap 
analysis. Two distinct clusters are visible, validating the ability of the LAD probe set to classify ccRCC tumors into 
ccA or ccB subtypes from other array platforms.
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often show that continuous variables provide more statis-
tical discrimination. In fact, LAD score is an independent 
predictor of survival (P = 0.0027) and is more predictive 
of outcome than Fuhrman grade (P = 0.0308). These data 
intimate that the classification schema presented in this 
article may provide independent prognostic information 
over and above that provided by standard clinical 
parameters.

Discussion

Unsupervised consensus clustering algorithms can identify 
distinct classifications of histologically similar tumors 
based on machine learning algorithms. In this analysis, a 
small gene set distinguishes two inherent molecular sub-
types of ccRCC (ccA and ccB), characterized by divergent 
biological pathways and a highly significant association 

Figure 6.  Classification of tumors from the validation data set by logical analysis of data (LAD) prediction shows that subtypes have differing survival 
outcomes. In total, 177 ccRCC tumors were individually assigned to ccA, ccB, or unclassified (uncl) by LAD prediction analysis, and cancer-specific survival 
(A) and overall survival (B) were calculated via Kaplan-Meier curves. The ccB subtype had a significantly decreased survival outcome compared to ccA, 
while unclassified tumors had an intermediate survival time (log rank P < 0.01). (C) Cancer-specific survival for intermediate (Fuhrman grades 2-3) tumors 
shows significant difference between subtypes. (D) Cancer-specific survival for high grade (Fuhrman grade 4) shows a trend of better survival for ccA tumors.
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with survival outcomes. This unique analysis provides a 
powerful method to discriminate molecular subgroups of 
tumors that may be informative of tumor biology or influ-
ence tumor behavior.

A fundamental problem in gene expression analysis of 
human tumors is the measurement of genetic noise in pair-
wise comparisons across thousands of independent and 
dependent variables. Our combined use of principal compo-
nent analysis (PCA), consensus clustering, and LAD is 
robust and, more important, identifies stable clusters within 
patterns of gene expression. This method is highly reproduc-
ible and able to classify samples into molecular and clini-
cally meaningful categories. Within these categories, “core 
clusters” are sets of nonoverlapping samples that are distin-
guishable from each other with high accuracy. This method 
of tumor analysis permits a refined assignment into gene 
expression-defined classifications and yields predictive 
gene signatures based on a manageable sized number of 
gene features. These properties permit the identification of 
limited sets of highly predictive molecular features (i.e., 
genes) useful for the classification of individual samples 
outside of the primary analysis. The extension of biomarker 
molecular profiles to small groups of genes, which can 
assign classification to individual tumors, is a major step 
forward toward the development of a clinically relevant bio-
marker. Ultimately, such a classification scheme will be 
applied with such measures as quantitative RT-PCR.

The clinical heterogeneity of ccRCC, coupled with pre-
vious gene expression studies,16,18,19,23 suggests that at 
least two molecular subtypes of ccRCC exist. We demon-
strated that there are likely only two primary subtypes of 
ccRCC stable under bootstrap analysis, although further 

subclassifications within these subtypes may be identified 
in much larger data sets, and rare tumors may represent 
unusual variants. Using the LAD predictions in the valida-
tion set, a third group of tumors shared pattern features with 
both ccA and ccB tumors. Such a third group, or other sug-
gested classifications, may represent an intermediate mani-
festation of tumors undergoing progression from ccA to the 
ccB subtype or simply share common characteristics of 
both groups.

The subtypes ccA and ccB were associated with a sig-
nificant difference in survival outcome, with ccA patients 
having a markedly better prognosis. While the continuous 
variable of LAD score proved to be an independent predic-
tor of survival, the more immediately clinically useful 
dichotomous classification of ccA or ccB had a similar 
effect size and was statistically significant at the P = 0.1 
level in the multivariable analysis. Future studies on larger 
numbers of patients are needed to validate the results of the 
preliminary multivariate analysis reported herein.

Pathway analysis showed that the better prognosis ccA 
group relatively overexpressed genes associated with 
hypoxia, angiogenesis, fatty acid metabolism, and organic 
acid metabolism, whereas ccB tumors overexpressed a 
more aggressive panel of genes that regulate EMT, the cell 
cycle, and wound healing. Intriguingly, ccA overexpresses 
genes associated with components of hypoxia and angio-
genesis pathways, processes known to be broadly dysregu-
lated in ccRCC. VHL inactivation and subsequent activation 
of the hypoxia response pathway is so highly correlated 
with ccRCC that many of these pathways are expected to be 
upregulated in virtually all ccRCC tumors. As expected, 
using both training set tumors and LAD assigned gene 
expression arrays from Gordan et al.,23 we identified VHL 
inactivation in both clusters. Thus, ccB may have acquired 
additional genetic events that supplement VHL pathway 
events, contributing to a more biologically immature and 
aggressive phenotype that overwhelms the signature associ-
ated with VHL inactivation, which should be evaluated in 
future studies. In addition, it will be interesting in the future 
to determine if the key features that make up this classifica-
tion are unique to ccRCC or if other histologic subtypes 
share the features of either the ccA or ccB classifications.

Finally, our small, robust panel of genes, whose expres-
sion levels can classify individual tumor samples into ccA 
and ccB subtypes with high accuracy, may provide a valu-
able resource for clinical decisions for patients following 
nephrectomy regarding frequency of surveillance or choices 
for adjuvant therapy in the future. This panel provides the 
basis for the development and validation by a prospective 
clinical trial to assign subtypes of ccRCC to individual 
tumor specimens for implementation in a prognostic 
algorithm.

Table 2.  Univariable Cox Regression Analysis for Disease-
Specific Survival

Covariate of Interest HR 95% CI P Value

Subtype ccA/ccB 2.2 1.4-3.4 0.0003
Subtype all ccA/ccB 1.8 1.2-2.7 0.0033
Subtype ccA/ccB/uncl 1.5 1.2-1.9 0.0004
LAD score 1.2 1.1-1.3 0.0002
Grade 1.9 1.4-2.5 <0.0001
Stage 3.4 2.6-4.3 <0.0001
Performance status 1.7 1.4-2.1 <0.0001

Hazard ratios (HRs), with 95% confidence intervals (CIs) and P Values, 
were calculated for the predicted subtype (ccA vs ccB), LAD score, stage, 
grade, and performance status. Analysis of “Subtype ccA/ccB” used only 
the 143 tumors classified using bootstrap analysis. Analysis of “Subtype all 
ccA/ccB” included all 177 tumors classified by LAD score without using 
the 75% confidence cutoff. Analysis of “Subtype ccA/ccB/uncl” included all 
177 tumors classified as ccA, ccB, or unclassified by LAD score and boot-
strapping. The HR for LAD score is per 0.1 units.
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Materials and Methods

Complete materials and methods can be found in the online 
supplementary material (Supplementary Data S11).

Samples. Fifty-one specimens from 48 ccRCC patients 
were collected from consenting patients undergoing 
nephrectomy for RCC from 1994 to 2008 (Supplementary 
Table S1), analyzed for quality, flash frozen, and accessed 
with appropriate institutional review board (IRB) approv-
als. The validation set of 177 cases was described previ-
ously.17 Survival data were updated with a median follow-up 
of 120 months (range, 66-271). The pVHL and HIF anno-
tated data set was previously described.23

Gene expression analysis. RNA was extracted using the 
Qiagen RNeasy kit (Valencia, CA), amplified, labeled, and 
hybridized against a reference9 on Agilent Whole Human 
Genome (4 × 44k) Oligo Microarrays. Expression data 
were tabulated, and missing data were imputed. Batches 
were combined using Distance Weighted Discrimination 
(DWD; https://cabig.nci.nih.gov/tools/DWD) and normal-
ized. Data are posted on GEO (GSE16449). Gene expres-
sion data from the validation set were collected,17 GEO 
(GSE3538). Print runs were DWD combined and normal-
ized. Gene expression data from the pVHL/HIF data set23 
were posted on GEO (GSE11904).

Pathway analysis. Heat maps were generated using 
Cluster 3.0 (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/
software/cluster/) and Java Treeview (http://jtreeview 
sourceforge.net/). Genes were functionally annotated in 
DAVID (http://david.abcc.ncifcrf.gov/). SAM-GSA (http://
www-stat.stanford.edu/~tibs/SAM/) was performed using 
MSigDB curated gene sets (http://www.broad.mit.edu/
gsea/msigdb/).

PCA. ConsensusCluster25 (http://code.google.com/p/sensus-
cluster/) was used for PCA26,27 and consensus clustering.12 
Features whose coefficients were in the top |25%| were 
selected from PCA eigenvectors representing 85% variation 
in the data, retaining 20 eigenvectors and 281 features.

Unsupervised consensus ensemble clustering. Consensus 
clustering was applied to PCA features to divide the data 
successively into k = 2, 3, 4 . . . clusters, with 80% boot-
strapping of 300 subsamples of genes and/or samples. We 
applied two clustering techniques, K-Means28 and Self-
Organizing Map.29

LAD. Features mapped to genes that discriminate 
between the two subtypes (t test, P < 0.000001) were 
retained. We then applied LAD30,31 (http://pit.kamick.
free.fr/lemaire/software-lad.html). LAD patterns requir-
ing only one gene for perfect discrimination were gener-
ated. LAD was reapplied to identify patterns of degree 1 
and degree 2 (homogeneity and prevalence = 0.9). A 
classifier CS = fP – fN assigned an unknown sample to a 
class, where fN/fP is the fraction of negative/positive 

patterns satisfied. If the LAD score (CS) was negative/
positive, the sample was predicted to class ccA/ccB, 
respectively.

Semi-quantitative RT-PCR. RNA from patient tumors (cho-
sen by RNA or tumor availability) was reverse transcribed 
primarily using RNA extracted from a second sample  
of tumor. cDNA was amplified by 25 cycles of semi- 
quantitative PCR with primer sets for FLT1, FZD1, GIPC2, 
MAP7, NPR3 (http://www.idtdna.com/), or control 18S 
rRNA primers (Applied Biosystems, Foster City, CA). Full-
sized gels are shown in Supplementary Figure S12.

VHL sequence and methylation analysis. DNA was 
extracted from tumor samples using proteinase K (Roche, 
Basel, Switzerland) and standard phenol/chloroform extrac-
tion. VHL exons were PCR-amplified and directly 
sequenced for mutations with a BigDye Terminator Cycle 
kit on a 3130xl sequencer (Applied Biosystems). Primers 
and protocols used were described previously.32 A CpG Wiz 
kit (Chemicon, Temecula, CA) and/or NotI digestion was 
used for methylation studies.33

Statistical methods. Statistical analyses were performed 
using R v2.4.1 (http://www.r-project.org), SAS (SAS Insti-
tute, Cary, NC), or STATA (StataCorp, College Station, 
TX). Kaplan-Meier estimated the time-to-event functions 
of disease-specific and overall survival. Disease-specific or 
overall survival was time between nephrectomy to date of 
death due to disease or date of death, respectively. Log-rank 
test was used to test for differences between survival curves. 
Univariable logistic regression evaluated the association of 
covariates on the outcome probability of subtype ccA ver-
sus ccB. Univariable and multivariable Cox regression 
evaluated the association of individual and multiple covari-
ates on disease-specific and overall survival. SBC24 
assessed model fit.
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