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Subtypes of renal tumors have different genetic back-
grounds, prognoses, and responses to surgical and
medical treatment, and their differential diagnosis is a
frequent challenge for pathologists. New biomarkers
can help improve the diagnosis and hence the manage-
ment of renal cancer patients. We extracted RNA from
71 formalin-fixed paraffin-embedded (FFPE) renal tu-
mor samples and measured expression of more than
900 microRNAs using custom microarrays. Clustering
revealed similarity in microRNA expression between
oncocytoma and chromophobe subtypes as well as be-
tween conventional (clear-cell) and papillary tumors.
By basing a classification algorithm on this structure,
we followed inherent biological correlations and could
achieve accurate classification using few microRNAs
markers. We defined a two-step decision-tree classifier
that uses expression levels of six microRNAs: the first
step uses expression levels of hsa-miR-210 and hsa-miR-
221 to distinguish between the two pairs of subtypes;
the second step uses either hsa-miR-200c with hsa-miR-
139-5p to identify oncocytoma from chromophobe, or
hsa-miR-31 with hsa-miR-126 to identify conventional
from papillary tumors. The classifier was tested on an
independent set of FFPE tumor samples from 54 addi-
tional patients, and identified correctly 93% of the
cases. Validation on qRT-PCR platform demonstrated
high correlation with microarray results and accurate
classification. MicroRNA expression profiling is a
very effective molecular bioassay for classification
of renal tumors and can offer a quantitative stan-
dardized complement to current methods of tumor
classification. (J Mol Diagn 2010, 12:687–696; DOI:
10.2353/jmoldx.2010.090187)

Renal cancers account for more then 3% of adult malig-
nancies and cause more than 13,000 deaths per year in

the United States alone.1 The incidence of renal cancers
in the United States rose more than 50% between 1983
and 2002,2 and the estimated number of new cases per
year in the United States rose from 38,890 in 20063 to
54,390 in 2008.1 Despite the trend of increased inci-
dence of relatively small and kidney-confined disease,
the rate of mortality has not changed significantly during
the last two decades in the United States and Eu-
rope.2,4–7 In the 1980s, renal tumors were basically re-
garded as one disease: the higher the stage and the
grade, the worse the prognosis. After the 1980s, molec-
ular biologists and pathologists described new entities
with different morphological and biological characteris-
tics. Evidence for different long-term prognosis for these
subtypes makes the correct pathological diagnosis of a
renal cancer critically important for the clinician.8–11 Cur-
rently, it is well accepted that renal cell carcinoma (RCC)
is a family of carcinomas that arise from the epithelium of
the renal tubules.12 The current classification of renal cell
carcinoma includes four main types: conventional (clear
cell), papillary, chromophobe, and collecting duct carci-
noma, as well as unclassified renal cell carcinoma.13

Oncocytoma, papillary adenoma, mesonephric ade-
noma, and angiomyolipoma are the main benign neo-
plasms in the kidney.

These different histological subtypes of RCC vary in
their clinical courses and their prognosis, and different
clinical strategies have been developed for their man-
agement. Patients with conventional RCC have a poorer
prognosis, and differences may also exist between the
prognosis of patients with papillary or chromophobe
RCC.8–11 The histological types arise through different
constellations of genetic alterations and show expression
or mutation in different oncogenic pathways; they there-
fore offer different molecular candidates for targeted ther-
apy (eg, mTOR, VEGF, KIT).14–16 Initial studies show

E.F., Z.D., and I.B. contributed equally to this study.

Accepted for publication March 29, 2010.

Authors affiliated with Rosetta Genomics are full-time employees and/or
hold equity in the company, which develops microRNA-based diagnostic
products and may stand to gain by publications of these findings. Authors
from Sheba Medical Center and Tel Aviv University declare no financial
conflict of interest.

Current address for N.R.: Molecular and Computational Diagnostics
Laboratory, Cancer Research UK Cambridge Research Institute, Li Ka
Shing Centre, Cambridge, UK; and Department of Oncology, University of
Cambridge, Cambridge, UK.

Address reprint requests to Nitzan Rosenfeld, Ph.D., Rosetta Genomics
Ltd, Plaut 10, Rehovot 76706, Israel. E-mail: nitzan.rosenfeld@cancer.org.uk.

Journal of Molecular Diagnostics, Vol. 12, No. 5, September 2010

Copyright © American Society for Investigative Pathology

and the Association for Molecular Pathology

DOI: 10.2353/jmoldx.2010.090187

687



differences in the responses of RCC subtypes to targeted
therapies,16,17 and future therapies are likely to be indi-
vidualized for the different types.15 The correct identifi-
cation of these subtypes is therefore important for choice
of treatment and for the selection of patients for clinical
trials.16,18

Conventional RCC is the most frequent subtype of
RCC and accounts for 60 to 70% of cases, thus causing
the majority of renal cell cancer specific mortality. The
term “conventional” is used to replace the name “clear
cell,” because some types have eosinophilic cytoplasm,
generating a more difficult diagnostic challenge. In tu-
mors of this type, a characteristic vascular network is
commonly observed. The conventional carcinoma type is
associated with germ line and somatic mutations of the
von Hippel–Lindau (VHL) suppressor gene, and such
mutations may indicate a more favorable prognosis.19,20

Papillary RCC typically consists of a central fibrovascular
core with epithelial covered papillae. It is subclassified
into type 1 and 2 tumors that differ in terms of morphol-
ogy, genotype, and clinical outcome.21 Genetically, this
type of tumor is associated with polysomies of chromo-
somes 7 or 17 and deficiency of Y.22 Chromophobe renal
cell carcinoma was included before 1986 in the group of
conventional RCC. The typical form exhibits balloon
cells with an abundant granular pale cytoplasm or
eosinophilic cytoplasm that resemble the cells of on-
cocytoma.23 Such features as described above are
characteristic of the histological subtypes, but interob-
server variations limit the accuracy of histological clas-
sification, with some types identified with a sensitivity
of 70% or lower.10 Furthermore, underlying biological
mechanisms playing important roles in these tumors
are yet to be elucidated.

Based on the growing clinical demand for accurate
diagnosis of RCC subtypes, recent studies focused on
the immunohistochemical profiling of different carcino-
mas. Allory et al lately described a subset of 12 antibod-
ies as base for classification of renal cell carcinomas. In
this report AMACR, CK7, and CD10 had the most pow-
erful classification trees with 78–87% of carcinomas cor-
rectly classified.24 Immunohistochemistry provides lim-
ited information for distinguishing chromophobe RCC
from oncocytoma.25,26 However, the increasing number
of smaller tumors and needle-biopsy procedures places
a strain on immunohistochemical methods. In a recent
large study of 235 cases, more than 20% of the core
needle biopsies were nondiagnostic.27 This emphasized
the need for developing additional types of molecular
markers for the classification of renal tumors and for their
study.

MicroRNAs, a family of small noncoding regulatory
RNAs,28 show promise as diagnostic biomarkers29,30

thanks to their distinct expression profiles in tumors of
different types and biological origins31,32 and their chem-
ical stability in clinical samples.33 Their role in renal can-
cers and their potential as biomarkers for this family of
malignancies are yet to be elucidated. One previous work
studied the expression of 248 microRNA clusters in a set
of 27 kidney specimens and found no association be-
tween microRNA expression and histological type.34 A

recent study compared expression of 470 microRNAs in
26 kidney samples and identified microRNAs differen-
tially expressed between conventional and chromo-
phobe renal tumors.35 Another recent study using 20
RCC samples found correlation of microRNA expres-
sion to the histological type of the tumor and to prog-
nosis of patients with clear cell RCC.36 These studies
included few samples and did not represent all of the
major types of renal tumors. Here we report a study of
microRNA expression profiles in more than 120 renal
tumor samples. We identified microRNA biomarkers
that are specifically expressed in the four most com-

Figure 1. Graphic representations of differentially expressed microRNAs. A:
Scatter-plot and volcano-plot comparison of oncocytoma and chromophobe
samples from the training set. Median normalized fluorescence of oncocytoma
samples (n � 21) is plotted against the median normalized fluorescence of
chromophobe samples (n� 13). Each microRNA is represented by a blue cross.
Control probes and microRNAs that did not pass the minimum expression
threshold of median normalized fluorescence �700 (in at least one of the two
groups) are shown in gray. Diagonal line shows equal signals (dash-dot line)
and twofold change in either direction (dotted lines). MicroRNAs that had a fold
change �4 in either direction and had a P value lower than 0.0417 (the threshold
determined for a false discovery rate of 0.1 or lower) are shown as full red circles.
B: Volcano plot showing the –log10(P value) against the log2 of the ratio of the
median expression for the same data. MicroRNAs with strong fold changes have
a large absolute value of the log2(ratio). Vertical lines indicate fourfold change in
median signal in either direction; horizontal line indicates the P value cut-off of
0.0417. Red circles show p-value �0.0417; full circles as in panel A.
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mon histological subtypes of renal tumors. We de-
signed a microRNA-based classification algorithm that
uses expression levels of 6 microRNAs to classify renal
tumors. This classifier had an accuracy of 93% in his-
tological classification of an independent test set of
renal tumors.

Materials and Methods

Samples and RNA Extraction

One hundred twenty-five renal tumor formalin-fixed
paraffin-embedded (FFPE) samples were obtained
from the pathology archives of Sheba Medical Center
(Tel-Hashomer, Israel, 107 samples) and commercial
sources (ABS Inc., Wilmington, DE, and BioServe,
Beltsville, MD, 18 samples). The study protocol was
approved by the Research Ethics Board of each of the
contributing institutes. FFPE samples were reviewed by
a pathologist with experience in urological pathology
(E.F.) for histological type based on hematoxilin-eosin
(H&E) stained slides, performed on the first and/or last
sections of the sample. Tumor classification was based
on the World Health Organization (WHO) guidelines.12

Tumor content was �80% for �80% of the samples,
and samples with tumor content �60% were not used.

The differential microRNAs were identified and the
classification algorithm was trained using 71 samples
from 68 patients including 21 oncocytoma samples (from
18 patients; two available FFPE samples were used for
each of three patients), 13 chromophobe RCC samples,
17 conventional RCC samples, and 20 papillary RCC
samples. The classification algorithm was tested on an
independent set of 54 samples from 54 new patients
including 17 oncocytoma samples, 14 chromophobe
RCC samples, 17 conventional RCC samples, and 6
papillary RCC samples.

Total RNA was isolated as previously described.31,37

Briefly, seven to ten 10-�m-thick tissue sections were
incubated a few times in xylene at 57°C to remove excess
paraffin and then washed several times with ethanol.
Proteins were degraded by incubating the sample in a
proteinase K solution at 45°C for a few hours. RNA was
extracted using acid phenol/chloroform and then pre-
cipitated using ethanol; DNAses were introduced to
digest DNA. Total RNA quantity and quality was mea-
sured by Nanodrop ND-1000 (NanoDrop Technolo-
gies, Wilmington, DE).

Table 1. Differentially Expressed MicroRNAs

Median values

(Conventional �
papillary) versus
(oncocytoma �
chromophobe)

Chromophobe versus
oncotcytoma

Papillary versus
conventional

MicroRNA name Oncotcytoma Chromophobe Conventional Papillary P value Fold AUC P value Fold AUC P value Fold AUC

hsa-miR-141 50 5800 50 72 1.3E-03 14.38 0.67 8.0E-06 116.81 0.88 2.5E-01 1.45 0.64
hsa-miR-200c 50 6500 50 130 2.7E-03 11.84 0.68 3.5E-05 129.68 0.88 1.3E-01 2.61 0.66
hsa-miR-373* 72 730 84 79 2.7E-03 2.64 0.67 1.0E-06 10.23 0.92 5.6E-01 1.06 0.54
hsa-miR-637 350 2700 200 350 1.0E-03 2.25 0.71 2.7E-06 7.56 0.92 1.7E-01 1.76 0.65
hsa-miR-371-5p 420 1600 220 300 5.2E-04 2.26 0.75 1.4E-05 3.73 0.91 1.4E-01 1.36 0.66
hsa-miR-557 390 1100 150 210 6.3E-06 3.66 0.79 3.2E-03 2.72 0.79 3.0E-01 1.39 0.61
hsa-miR-193b 3900 1800 1200 670 2.6E-05 3.2 0.8 6.8E-02 2.2 0.68 3.0E-01 1.74 0.6
hsa-miR-365 2700 890 830 500 2.6E-04 2.49 0.78 9.2E-04 3.08 0.81 2.6E-02 1.67 0.7
hsa-miR-126 21000 14000 29000 4200 4.9E-03 1.68 0.66 3.3E-03 1.57 0.81 5.0E-09 6.81 0.95
hsa-miR-139-5p 790 100 120 50 2.7E-04 6.81 0.76 8.6E-05 7.75 0.87 1.6E-01 2.38 0.73
hsa-miR-222 52000 73000 5200 7500 4.1E-15 8.24 0.92 3.8E-03 1.42 0.74 6.3E-02 1.45 0.74
hsa-miR-221 58000 81000 4000 8000 4.4E-17 10.95 0.93 1.9E-02 1.39 0.74 1.1E-02 2 0.81
hsa-miR-221* 800 630 50 50 1.1E-17 14.39 0.94 1.3E-01 1.27 0.69 1.1E-01 1 0.6
hsa-miR-10a 37000 24000 6100 14000 9.0E-07 4.16 0.86 9.2E-02 1.53 0.73 5.7E-03 2.24 0.84
hsa-miR-30b 45000 59000 13000 19000 5.1E-11 2.69 0.9 2.8E-01 1.32 0.63 5.2E-03 1.5 0.76
hsa-miR-182 1400 1500 50 580 1.1E-06 5.8 0.81 8.1E-01 1.03 0.55 5.0E-04 11.66 0.81
hsa-miR-187 400 720 50 50 4.3E-06 9.13 0.81 4.9E-02 1.82 0.68 9.5E-01 1 0.51
hsa-miR-551b 1100 50 50 1300 2.8E-01 5.31 0.56 1.1E-02 21.1 0.75 2.1E-06 25.16 0.86
hsa-miR-138 50 50 70 790 3.9E-04 8.42 0.75 4.8E-01 1 0.6 1.7E-04 11.27 0.83
hsa-miR-31 50 330 250 14000 2.5E-06 29.31 0.81 1.5E-02 6.63 0.73 2.5E-06 56.37 0.89
hsa-miR-196b 430 210 370 1100 9.1E-02 1.53 0.63 4.1E-01 2.05 0.58 7.0E-02 2.81 0.72
hsa-miR-200a 1600 5500 3200 11000 3.5E-02 1.74 0.66 1.2E-02 3.38 0.82 8.0E-04 3.44 0.9
hsa-miR-200b 2000 8200 2800 15000 9.5E-02 1.85 0.63 2.2E-03 4.13 0.81 3.3E-05 5.17 0.91
hsa-miR-192 50 220 5200 1600 4.6E-08 21.24 0.84 5.4E-01 4.44 0.61 6.5E-02 3.28 0.74
hsa-miR-194 58 160 4200 2300 1.2E-07 20.63 0.83 4.2E-01 2.69 0.62 2.1E-01 1.87 0.69
hsa-miR-455-3p 120 98 1500 1200 1.8E-13 11.42 0.92 2.3E-01 1.27 0.58 2.0E-01 1.27 0.63
hsa-miR-146a 350 310 1400 1900 3.4E-12 4.98 0.92 7.0E-01 1.13 0.55 2.8E-01 1.38 0.64
hsa-miR-204 50 50 1700 2700 5.1E-10 48.33 0.87 9.9E-01 1 0.53 4.9E-02 1.59 0.71
hsa-miR-210 280 370 11000 3300 1.2E-10 15.79 0.89 9.2E-01 1.32 0.52 8.4E-03 3.38 0.89
hsa-miR-21 20000 21000 110000 180000 2.7E-10 7.79 0.88 4.4E-01 1.06 0.56 1.2E-01 1.56 0.68
hsa-miR-21* 50 66 800 2000 1.4E-12 28.66 0.91 4.3E-01 1.32 0.63 6.9E-02 2.45 0.78
hsa-miR-146b-5p 77 160 1700 1200 6.5E-12 10.4 0.9 5.0E-01 2.01 0.55 3.7E-01 1.38 0.58
hsa-miR-155 77 83 1300 600 9.2E-09 9.65 0.85 9.5E-01 1.08 0.5 5.4E-02 2.23 0.72

Pair-wise comparisons of each of the four histological types identified 33 differentially expressed microRNAs. Here we show the P value, fold-
change of the median signal, and area under the ROC curve (AUC) for each of these microRNAs in comparing papillary with conventional tumors,
oncocytomas with chromophobe tumors, and in comparing the combination of conventional with papillary with the union of chromophobe with
oncocytoma. The six microRNAs used for classification are highlighted in bold and underline, along with their median values in the relevant histological
types and the statistical parameters for the separation between the two types or groups (branches in the binary decision tree).
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MicroRNA Profiling Using Microarrays

Custom microRNA microarrays were prepared as de-
scribed previously.31,37 Briefly on Slide E coated microar-
ray slides (Schott Nexterion, Mainz, Germany) �900 DNA
oligonucleotide probes representing microRNAs were
spotted in triplicate using the BioRobotics MicroGrid II
microarrater (Genomic Solutions, Ann Arbor, MI) accord-
ing to the manufacturer’s directions. Total RNA (3.5 �g)
were labeled by ligation of an RNA-linker, p-rCrU-Cy/dye
(Eurogentec Inc., San-Diego, CA; Cy3 or Cy5) to the 3�
end. Slides were incubated with the labeled RNA for
12–16 hours at 55°C and then washed twice. Arrays were
scanned using Agilent DNA Microarray Scanner Bundle
(Agilent Technologies, Santa Clara, CA) at a resolution of
10 �m with 100% and 10% laser power. Array images
were analyzed using SpotReader software (Niles Scien-
tific, Portola Valley, CA). Microarray spots were combined
and signals normalized as described previously.31,37

Statistical Methods for Microarray Analysis

For every pair of groups (eg, oncocytoma versus chro-
mophobe or conventional versus papillary), microRNA

expression was compared for all microRNAs that had
expression level above background (median normalized
fluorescence signal �700) in at least one of the two
groups. P values were calculated using a two-sided (un-
paired) Student’s t-test on the log-transformed normal-
ized fluorescence signal (Figure 1, A and B). The thresh-
old for significant differences was determined by setting
a false discovery rate of 0.1, to correct for effects of
multiple hypothesis testing,38 resulting in P value cut-offs
in the range of 0.03–0.06. For each differentially ex-
pressed microRNA we calculated the fold-difference (ra-
tio of the median normalized fluorescence) and the area
under curve (AUC) of the response operating character-
istic (ROC) curve (Table 1). Hierarchical clustering was
used to group histological types (Figure 2). For classifi-
cation, two microRNAs with opposite specificity (Figure
3) were chosen at each decision point (Figure 4A), and
their ratio of expression (ratio of the normalized fluores-
cence signal) was calculated for each sample. A thresh-
old level for the value of the ratios was determined using
the training set of samples (indicated by the gray shaded
regions in Figure 4, B–D) by choosing the cut-off value
with the smallest number of classification errors on the

Figure 2. Clustering of kidney tumors by microRNA expression. The 33 differentially-expressed microRNAs (Table 1) were used to cluster the 71 samples of the
training set. Normalized fluorescence signals were log-transformed, shifted to mean � 0, and rescaled to STD � 1 to enhance the expression differences. Outlying
values were trimmed for optimal scaling (lower panel). The Euclidian distance was calculated between every pair of samples, and a hierarchical binary cluster
tree was generated from these distances using the inner squared distance algorithm, and taking the logarithm of the resulting distances. The upper panel shows
a dendrogram of hierarchical clustering of these samples. The histological type of each sample is indicated in the middle panel, with oncocytoma samples (“O,”
n � 21) indicated in red, chromophobe tumors (“H,” n � 13) shown in yellow, conventional tumors (“C,” n � 17) shown in blue, and papillary tumors (“P,” n �
20) in green. The samples clustered into four groups that closely follow the four histological types. Among the four groups, the oncocytoma and chromophobe
samples cluster together, whereas the conventional tumors show a higher degree of similarity to papillary tumors.
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training set. These thresholds were used to classify the
test samples.

qRT-PCR Validation

Six microRNA chosen for classification based on microar-
ray results and U6 small RNA (used for normalization)
were measured using a quantitative real-time polymerase
chain reaction (qRT-PCR) method recently described.33

Briefly, RNA was incubated in the presence of poly(A)
polymerase (NEB), MnCl2, and ATP for 1 hour at 37°C.

Then, using an oligodT primer harboring a consensus
sequence, reverse transcription was performed on total
RNA using SuperScript II RT (Invitrogen). Next, the cDNA
was amplified by real-time PCR; this reaction contained a
microRNA-specific forward primer, a TaqMan probe
complementary to the 3� of the specific microRNA se-
quence as well as to part of the polyA adaptor sequence,
and a universal reverse primer complementary to the
consensus 3� sequence of the oligodT tail. The cycle
threshold (Ct, the PCR cycle at which probe signal
reaches the threshold), representing expression levels in
logarithmic scale, was determined for each well.

Normalization of qRT-PCR Results

The normalized Ct of each microRNA in each sample
[normCt(miR-X)] was determined according to the mea-
sured Ct of that microRNA, the Ct of U6 in the same
sample and the global average Ct [ie, the average Ct
measured in the experiment (globalAverageCt � 29.9)]:

normCt(miR-X) � 50 � [Ct(miR�X) � Ct(U6)
� globalAverageCt]

Comparison of qRT-PCR and Microarray
Results

The classification scheme determined using microarray
results was used for analysis of qRT-PCR results. At each
decision point (Figure 4), the expression ratio between
the two microRNA according to qRT-PCR was calculated
as the difference in normalized Ct (because Ct is in
logarithmic scale, Ct differences represent ratios of
expression). Correlation coefficients of microarray ex-
pression ratios and qRT-PCR expression ratios were
calculated. Classification thresholds for qRT-PCR were
determined based on the microarray results: for each
decision point, the approximate qRT-PCR threshold
was interpolated from the linear fit to the microarray
data (Figure 5, A, C, and E). One correctly classified
sample closest to the threshold was then chosen from
each sample group. The average qRT-PCR expression
ratio of these two samples was used as classification
threshold of qRT-PCR results.

Results

One hundred twenty-five FFPE samples of renal tumors
were collected, including 38 oncocytoma samples, 27
chromophobe RCC samples, 34 conventional (clear) cell
RCC samples, and 26 papillary RCC samples. The initial
sample set used for biomarker identification and for train-
ing a classifier (see below) included 71 samples. Total
RNA was extracted from these samples, and microRNA
expression was assessed using microarrays.

We first looked for microRNAs that are differentially
expressed between different histological subtypes of kid-
ney tumors. We compared the expression of microRNAs
between oncocytoma samples (n � 21, from 18 patients),
chromophobe tumors (n � 13), conventional tumors (n �

Figure 3. Separation between histological types using a small set of microR-
NAs. The training set included oncocytoma samples (“O,” n � 21, red stars),
chromophobe tumors (“H,” n � 13, black/yellow diamonds), conventional
tumors (“C,” n � 17, blue squares), and papillary tumors (“P,” n � 20, green
circles). Plotting the expression of hsa-miR-221, hsa-miR-31, and hsa-miR-
200c in each of the training set samples (A), the four types of samples group
into areas with distinct ranges of expression. Box-plots (B, C, and D) indicate
expression levels of microRNAs in the four histological types (same samples
as in A), showing the median value (horizontal line), 25 to 75 percentile
(box), extent of data (whiskers), and outliers (crosses). Hsa-miR-221 and
hsa-miR-210 (B) have distinct expression in oncocytomas and chromophobe
tumors compared with conventional and papillary tumor, with hsa-miR-221
more strongly expressed in oncocytomas and chromophobe tumors, and
hsa-miR-210 more strongly expressed in conventional and papillary tumors.
Hsa-miR-139-5p and hsa-miR-200c (C) have distinct expression in oncocyto-
mas compared with chromophobe tumors, with hsa-miR-139-5p more
strongly expressed in oncocytomas and hsa-miR-200c more strongly ex-
pressed in chromophobe tumors. Hsa-miR-126 and hsa-miR-31 (D) have
distinct expression in conventional tumors compared with papillary tumors,
with hsa-miR-126 more strongly expressed in conventional tumors and hsa-
miR-31 more strongly expressed in papillary tumors.
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17), and papillary tumors (n � 20). More than 900 mi-
croRNAs39 were compared using statistical tests. Mi-
croRNAs were considered differentially expressed be-
tween any two histological types if their t-test significance
(P value) indicated a false discovery rate below 0.1 and
their median expression level changed at least fourfold
between the two groups (Figure 1). Thirty-three microR-
NAs were identified as differentially expressed between
different kidney tumors types (Table 1). To identify under-
lying similarities between the histological types, the ex-
pression level of these 33 microRNAs was used to cluster
the 71 samples. This analysis identified four main clusters
that closely followed the predefined groups (Figure 2).
Further, the expression of microRNAs showed a high
degree of similarity between conventional and papillary
tumors and between chromophobe RCC and oncocy-
toma, and a lower degree of similarity between these
pairs (Figure 2), consistent with the known biology of
these tumors.14

The clustering also identified groups of microRNAs
with similar profiles. Such coregulated groups can hint at
a possible effect of upstream regulatory components. An
analysis of predicted binding sites of transcription factors
near the start sites of coregulated microRNA transcripts40

generates a list of transcription factors that may be en-
riched for factors related to biological differences be-
tween the histological types40 (Table 2).

Given the underlying biological similarities between
the tumor types (Figure 2), we decided to construct a
classifier to identify kidney tumor subtype in two steps,
following the binary structure31 of the hierarchical clus-
tering tree: the first step identifies whether the sample
belongs to one pair of types (chromophobe, oncocy-
toma) or to the other pair (conventional, papillary); the
second step decides between the two types in each pair.
The classifier therefore has three decision points, corre-
sponding to the comparisons in Table 1. For each such
decision point (or “node”), we chose two microRNAs: one

that is highly expressed in one group, and another that is
more strongly expressed in the other group. MicroRNAs
were selected based on their expression levels and dis-
tributions in the training set (Table 1), with the aim of
selecting microRNAs that provide a distinct difference in
expression that can be used for accurate classifica-
tion.30,37,41 For identifying between the pair of types
(chromophobe, oncocytoma) and the pair (conventional,
papillary), we chose hsa-miR-221 and hsa-miR-210; for
identifying between chromophobe and oncocytoma, we
chose hsa-miR-200c and hsa-miR-139-5p; and for iden-
tifying between papillary and conventional, we chose
hsa-miR-31 and hsa-miR-126 (Figure 3). Using one
microRNA from each set is sufficient to obtain a clear
separation between the four groups (Figure 3A), but to
provide internal normalization and ensure better perfor-
mance we used a combination of two microRNAs with
complementary specificities at each decision point.
Among this set of microRNAs, each histological type has
high expression of at least two microRNAs (eg, hsa-miR-
210 and hsa-miR-31 for papillary, or hsa-miR-221 and
hsa-miR-200c for chromophobe) and low expression of at
least two other microRNAs (Figure 3).

We used the 71 samples of the training set to train a
simple classifier, comprising two steps and three pairs of
microRNAs (Figure 4). For each pair of microRNAs, a
threshold was determined on the ratio of the expression
levels of the twomicroRNAs (Materials and Methods)—this is
equivalent to a straight line that separates two regions in
log-space (see Figure 4). In the first step (Figure 4B), if the
ratio of relative expression (normalized fluorescence) of
hsa-miR-221 to relative expression (normalized fluores-
cence) of hsa-miR-210 is greater than the threshold value of
9.86, the sample takes the left branch (Figure 4A) and is
identified as either oncocytoma or chromophobe. If (hsa-
miR-221/hsa-miR-210)�9.86, the samples takes the right
branch (gray shaded region in Figure 4B) and is identified
as either conventional or papillary. In the second step, the

Figure 4. Classification of kidney tumors using
expression levels of six microRNAs (microarray
data). A: Classification proceeds in two steps,
following the cluster structure of the histological
types (Figure 2). First, samples are classified into
either the oncocytoma/chromophobe pair, or
the conventional/papillary pair, using expres-
sion levels of hsa-miR-210 and hsa-miR-221 (B).
In the second step, oncocytoma is differentiated
from chromophobe using expression levels of
hsa-miR-200c and hsa-miR-139-5p (C), and con-
ventional is differentiated from papillary using
expression levels of hsa-miR-31 and hsa-miR-126
(D). Independent test samples included oncocy-
toma samples (n � 19, red stars), chromophobe
tumors (n � 14, black/yellow diamonds), con-
ventional tumors (n � 17, blue squares), and
papillary tumors (n � 6, green circles). The gray
shaded regions indicate the thresholds for clas-
sification for each pair of microRNAs, indicating
in each case the right branch in the binary clas-
sification tree (A). The 71 samples that were
used for training the thresholds (see Methods
and Figure 3) are shown in faded symbols in the
background.
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same process is used—if (hsa-miR-200c/hsa-miR-139-
5p)�33.1, the sample is classified as chromophobe (gray
region in Figure 4C), otherwise it is classified as oncocy-
toma. Alternatively, if (hsa-miR-126/hsa-miR-31)�2.32, the
sample is classified as papillary (gray region in Figure 4D),
otherwise it is classified as conventional. In the training set,
this classifier correctly identified 62 of 71 samples, with an
overall accuracy of 87% (95% confidence interval: 77–94%,
assuming a binomial distribution).

Samples from 54 independent cases were collected as a
test set (Figure 4). These samples were processed and their
microRNA expression profiles were measured using the
same protocols, more than two months after the initial train-
ing set samples were profiled. The microRNA expression
profiles of these samples were used to predict their histo-
logical subtype according to the classification algorithm

defined above (Figure 4). Of the 54 test samples, 50 sam-
ples were classified correctly and four samples were clas-
sified incorrectly (Table 3): two of the 14 chromophobe
samples were classified as oncocytoma; one of the 17
oncocytoma samples was classified as chromophobe; one
of the 17 conventional samples was classified as oncocy-
toma; the remaining 50 samples including all six papillary
samples were classified correctly. Identification sensitivity
was 94% for oncocytoma, 86% for chromophobe, 94% for
conventional, and 100% for papillary, with overall accuracy
of 93% (95% confidence interval: 82–98%, assuming a bi-
nomial distribution).

To validate the classifier using a different platform, 32
samples (eight from each subtype) from both the training
set (17 samples) and the test set (15 samples), were ran-
domly chosen and the six classifier microRNAs were mea-
sured using qRT-PCR (Materials and Methods). qRT-PCR
results demonstrated high correlation with microarray re-
sults for the expression ratios of hsa-miR-221/hsa-miR-210,
hsa-miR-200c/hsa-miR-139-5p, and hsa-miR-126/hsa-miR-31
(Figure 5, A, C, and E) with correlation coefficients of 0.92,
0.86, and 0.98, respectively. Thresholds for the classifica-
tion using the qRT-PCR data were chosen based on the
thresholds trained on the microarray data (Materials and
Methods). Of these samples, 91% (93% of the test set
samples) were classified correctly by the qRT-PCR data
(Figure 5, B, D, and F, and Table 3). Thirty of the 32 samples
were classified by the qRT-PCR in agreement with the clas-
sification using microarray. Two cases showed disagree-
ment between the two platforms: one chromophobe tumor
sample that was misclassified as oncocytoma in the mi-
croarray was classified correctly as chromophobe in the
qRT-PCR (Figure 5C). One papillary tumor sample correctly
identified by the microarray classifier was misclassified as
conventional type by the qRT-PCR classifier (Figure 5E).
The expression ratios for this latter sample were close to the
classification threshold in both platforms.

Discussion

Renal cell cancer comprises different subtypes of cancers
that differ in genetic background, responses to surgical and
medical therapy, and prognoses. The different histological
subclasses of RCC are associated with the different dis-
ease specific survival that range from 24% to 100% at 5
years from surgery.8–11 While nonconventional types of
RCC have a lower pathological stage and reduced portion
of metastatic disease, its response to systemic medical
therapy is reduced compared with conventional type
RCC.17 A postoperative prediction nomogram to predict the
probability for recurrence following surgical therapy used
histology subtyping in addition to the preoperative patient’s
symptoms, tumor size, and pathological stage.42 Various
markers have been suggested and used for this distinction
between histology subtypes, but these show mixed or lim-
ited specificities, and a significant fraction of samples may
be unclassified or misclassified.10,43,44 Unclassified RCC
comprise up to 6% of all RCC even in series from centers of
excellence and have the worst clinical outcome as com-
pared with other subclasses.8,45,46 We can assume that the

Figure 5. Validation by qRT-PCR. The qRT-PCR validation set included 32
tumor samples: 8 oncocytoma tumors (red stars), 8 chromophobe tumors
(yellow diamonds), 8 conventional tumors (blue squares), and 8 papillary
tumors (green circles). For each decision point (Figure 4A), the plot on the
left side (A, C, or E) shows the log2 expression ratio of the two microRNAs
used at this node as measured by microarray (horizontal, calculated as the
log2 ratio of the normalized fluorescence signal) and by qRT-PCR (vertical,
calculated as the difference in normalized Ct values). In each plot, the vertical
line demarcates the classification threshold trained on the microarray data,
while the horizontal line indicates the classification threshold that was cho-
sen for the qRT-PCR data, based on the microarray threshold (Methods). The
plots on the right side (B, D, or F) show the qRT-PCR data (normalized Cts)
of the two microRNAs in the samples of the relevant subtypes at each node.
The gray shaded regions indicate the thresholds for classification for each
pair of microRNAs, indicating in each case the right branch in the binary
classification tree (Figure 4A). A: Log2 expression ratio of [hsa-miR-221/hsa-
miR-210] in microarray and qRT-PCR. Correlation coefficient was 0.92. B:
Normalized Cts of hsa-miR-221 and hsa-miR-210 in 32 samples. C: Log2
expression ratio of [hsa-miR-139-5p/hsa-miR-200c] in microarray and qRT-
PCR. Correlation coefficient was 0.86. D: Normalized Cts of hsa-miR-139-5p
and hsa-miR-200c in 16 oncocytoma and chromophobe samples. E: Log2
expression ratio of [hsa-miR-126/hsa-miR-31] in microarray and qRT-PCR.
Correlation coefficient was 0.98. F: Normalized Cts of hsa-miR-126 and
hsa-miR-31 in 16 conventional and papillary samples.
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proportion of unclassified RCC is higher in centers lacking
dedicated pathologists focusing in genitourinary malignan-
cies, therefore emphasizing the need for additional diag-
nostic tools for RCC subclassification.

Here we investigated the utility of microRNA as poten-
tial biomarkers for the identification of these distinct bio-
logical entities. We identified a set of microRNAs that are
significantly differentially expressed between the four

common types of renal malignancies. MicroRNA expres-
sion profiles exhibited an underlying similarity between
oncocytoma and chromophobe, and between conven-
tional and papillary tumors, reflecting their distinct bio-
logical origins.14 We designed a diagnostic algorithm
that takes advantage of this similarity and distinguishes
between RCC subtypes based on the expression of six
microRNAs. The gold standard used in this study was

Table 2. Association between Coexpressed MicroRNAs and Their Predicted Coregulating Transcription Factors (TFs)

Transcription factor(s) MicroRNAs with predicted TF binding sites

MicroRNAs upregulated in oncocytoma
Ahr,Arnt, GR-alpha, GR-beta hsa-miR-139-5p, hsa-miR-365
MicroRNAs upregulated in oncocytoma and chromophobe tumors
AR,Arnt, MEF-2A, NCX hsa-miR-10a and hsa-miR-221/222
Cdc5, POU3F2 (N-Oct-5a), POU3F2 (N-Oct-5b) hsa-miR-182, hsa-miR-221/222
c-Myc, Max1, SREBP-1a (b,c) hsa-miR-10a, hsa-miR-30b
E4BP4, Hlf hsa-miR-221/222, hsa-miR-30b
GATA-1, MZF-1 hsa-miR-10a, hsa-miR-182
LCR-F1 hsa-miR-182, hsa-miR-221/222, hsa-miR-30b
POU3F2, TBP hsa-miR-10a, hsa-miR-182, hsa-miR-221/222
MicroRNAs upregulated in papillary tumors
AREB6 hsa-miR-196b, hsa-miR-200a/b, hsa-miR-31
C/EBPbeta hsa-miR-196b, hsa-miR-31
HNF-1A hsa-miR-200a/b, hsa-miR-31
POU2F1, Sp1, SRF, YY1 hsa-miR-196b, hsa-miR-200a/b
MicroRNAs upregulated in conventional and papillary tumors
AhR, AP-4, Arnt hsa-miR-192/4, hsa-miR-210, hsa-miR-455-3p
AP-2alphaA, AP-2gamma hsa-miR-21, hsa-miR-210, hsa-miR-455-3p
AR, AREB6, Nkx2-1 hsa-miR-192/4, hsa-miR-204
ATF6 hsa-miR-192/4, hsa-miR-455-3p
E47 hsa-miR-192/4, hsa-miR-204, hsa-miR-455-3p
Elk-1 hsa-miR-204, hsa-miR-21
AP-2rep, FOXD1, MAZR hsa-miR-204, hsa-miR-210
GATA-1, NF-kappaB2, Sox9 hsa-miR-146a, hsa-miR-204
GR-alpha hsa-miR-210, hsa-miR-455-3p
HSF1 (long), Meis-1 hsa-miR-146a, hsa-miR-204, hsa-miR-210
HSF2, OCA-B, Octa-factor, octamer-binding factor, Oct-B1(B2, B3),

POU2F2 (2F2B, 2F2C, 3F1, 3F2, 4F1(l), 5F1A, 5F1B, 5F1C)
hsa-miR-146a, hsa-miR-210

ISGF-3, Pax-5, STAT1alpha, STAT1beta, STAT3 hsa-miR-204, hsa-miR-455-3p
MEF-2A hsa-miR-146a, hsa-miR-21, hsa-miR-455-3p
NF-kappaB, NF-kappaB1 hsa-miR-146a, hsa-miR-192/4, hsa-miR-204, hsa-miR-455-3p
Pax-2 hsa-miR-192/4, hsa-miR-204, hsa-miR-210, hsa-miR-455-3p
POU2F1 hsa-miR-146a, hsa-miR-192/4, hsa-miR-204, hsa-miR-210
PPAR-gamma1, PPAR-gamma2 hsa-miR-192/4, hsa-miR-204, hsa-miR-210
RelA hsa-miR-146a, hsa-miR-192/4, hsa-miR-455-3p

MicroRNAs were clustered according to a similar expression pattern across the four different renal tumor types as described in Figure 2. TFs were
associated with microRNAs following existence of predicted TF binding sites in the microRNA promoter as described.40 The table lists only TFs which were
associated with at least two coexpressed microRNAs. Several TFs in the same row indicate that all TFs are associated with the same microRNAs in that row.
MicroRNAs presented as hsa-miR-###/# (eg, hsa-miR-192/4), indicate that the two microRNAs are located in the same genomic cluster and therefore are
predicted to be part of a shared pri-microRNA. KIT is not represented in the table as it is associated with hsa-miR-221/222 but not coexpressed microRNA.

Table 3. Classification of Renal Tumors Using Expression Levels of 6 MicroRNAs

Reference diagnosis

Classification based on microarray data in the test set

Correct classificationsOncotcytoma Chromophobe Conventional Papillary

Oncotcytoma 16 1 — — 16/17 (94%)
Chromophobe 2 12 — — 12/14 (86%)
Conventional 1 — 16 — 16/17 (94%)
Papillary — — — 6 6/6 (100%)
Classification based on

qRT-PCR data
Oncotcytoma 8 (4) — — — 8/8 (4/4)
Chromophobe — 8 (4) — — 8/8 (4/4)
Conventional 1 (-) — 7 (4) — 7/8 (4/4)
Papillary — 1 (-) 1 (1) 6 (2) 6/8 (2/3)

The upper part of the table shows the classification results for the 54 microarray test set samples (Figure 4). The lower part of the table shows the
classification results for 32 samples measured by qRT-PCR. Eight samples chosen randomly from each group were measured by proprietary
microRNA qRT-PCR for the six microRNAs used in the classification (Figure 5). The table shows the number of samples from each group that were
classified into each predicted class (Materials and Methods). Numbers in parentheses (in the qRT-PCR section) indicate the values for the test-set
samples.
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histolopathologic classification based on pathological re-
view, which can have significant observer variability.10,47

Furthermore, the classification algorithm developed on
microarrays used only microRNA markers and did not
use other potential markers. Nevertheless, the microRNA-
based classifier we developed reached an accuracy of
93% in histological classification of an independent set of
54 test samples. We validated this classifier on a qRT-
PCR platform30,48 and demonstrated that renal tumor
subtypes can be accurately identified using qRT-PCR
measurement for the set of six specific microRNA mark-
ers. The results obtained using microarray expression
profiling compare favorably with classification accuracy
of 78–87% obtained using IHC markers24 and can pro-
vide additional information for characterization of nondi-
agnostic biopsies.27 Furthermore, classification rules
based on quantitative measurement of microRNA expres-
sion levels can form a basis for standardized objective
assays.30,48,49 This diagnostic model based on mi-
croRNA expression levels can potentially be used to
complement existing tools at preoperative and postoper-
ative setting to differentiate the four major RCC subtypes
and may be a useful clinical aid for the diagnosis and
management of renal tumor cases.

The differentially expressed microRNAs we identified
can provide clues to the biological differences between
the subtypes, their diverging oncogenetic processes,
and possible new targets for type-specific target therapy.
We found that hsa-miR-141 and hsa-miR-200c are spe-
cifically expressed in the chromophobe tumors—this
agrees with a previous study that found these microRNAs
down-regulated in conventional tumors.35 This family of
microRNAs is strongly expressed in epithelial tissues31

and is involved in the regulation of the epithelial-to-mes-
enchymal transition.50,51,52 Hsa-miR-221 and hsa-miR-
222 are strongly expressed in both chromophobe and
oncocytoma types. Overexpression of these microRNAs
in chromophobe tumors was also observed by Nakada
and colleagues.35 These microRNAs inhibit erythropoie-
sis by targeting and down-regulating the KIT receptor.53

Interestingly, KIT was found to be expressed specifically in
oncocytoma and chromophobe subtypes of RCC54–57—the
interplay between hsa-miR-221/222 and KIT in renal cells
and its contribution to renal malignancies remains to be
studied. Other microRNAs show strong differences in
expression between the subtypes (Table 1), but their
involvement in the oncogenic process is not clear. Some
clues or links to other known pathways may be found
through transcription factors that potentially regulate
these microRNAs (Table 2).40 Further research will be
required to elucidate the biological mechanisms these
regulate, and how these can be used for future therapeu-
tic approaches.
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