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Abstract

Purpose: To evaluate the clinical and immunologic outcomes of DC (dendritic cell) vaccine

with interleukin (IL)-2 and IFN-α 2a in metastatic renal cell carcinoma patients.

Experimental Design:  Eighteen consented and eligible patients were treated. Peripheral

blood monocytes were cultured ex vivo into mature DCs and loaded with autologous tumor

lysate. Treatment consisted of five cycles of intranodal vaccination of DCs (1 × 10
7
 cells/1

mL Lactated Ringer's solution), 5-day continuous i.v. infusion of IL-2 (18MiU/m
2
), and three

s.c. injections  of  IFN-α  2a (6MiU) every other day. Response Evaluation Criteria in Solid

Tumors  criteria were  used  for disease  assessment.  Correlative  immunologic  end  points

included  peripheral  blood  lymphocyte  cell  phenotype  and  function as  well  as  peripheral

blood anti–renal cell carcinoma antibody and cytokine levels.

Results: All patients received between two and five treatment cycles. Toxicities consisted of

known and expected cytokine side effects. Overall objective clinical response rate was 50%

with three complete responses. Median time to progression for all patients was 8 months,

and median survival has not been reached (median follow up of  37+ months). Treatment-

related changes in correlative immunologic end points were noted and the level of circulating

CD4
+

 T  regulatory cells  had  a strong  association with outcome. Pre–IP-10  serum levels

approached significance for predicting outcome.

Conclusions:  The  clinical and immunologic  responses  observed in this  trial  suggest an

interaction between DC vaccination and cytokine therapy. Our data support the hypothesis

that  modulation of  inflammatory,  regulatory,  and  angiogenic  pathways  are  necessary  to

optimize  therapeutic  benefit  in  renal  cell  carcinoma patients.  Further  exploration of  this

approach is warranted.

renal cell carcinoma  tumor vaccine therapy  immunotherapy  interleukin 2

dendritic cell vaccine  IFN-α

Translational Relevance

This  article  summarizes  a  phase  II  trial  treating  patients  with  metastatic  renal  cell

carcinoma with a novel autologous dendritic  cell (DC) vaccine combined with standard

immunotherapy. Although DCs have been hailed as the most potent antigen-presenting

cells, DC vaccines  in general have  been quite  unsuccessful.  Research over the  past

decade has shown that these cells play a key role not only in antigen presentation, but

also as gatekeepers to immune tolerance. We hypothesized that intranodal DC injection

combined with interleukin-2 and IFN-α2a would have enhanced clinical results. In addition,

we used autologous tumor lysate to  provide an individualized and wide-ranging antigen

profile. The clinical results were very impressive with a 50% overall clinical response rate.

Immunologic  results  support  these  clinical  observations.  Some of  these  immunologic
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insights will have effect on future immunotherapeutic treatment protocols in this disease.

Renal cell carcinoma (RCC) contributes significantly to cancer-related mortality.
14

 Improved

overall survival (OS) in metastatic RCC (mRCC) patients treated with interleukin (IL)-2, IFN-α,

or both have been described (1, 2). Clinical and laboratory data suggest a role for the host

immune system and angiogenic pathways in this disease (3–11).

The most successful therapy for mRCC has been single-agent, high-dose aldesleukin (IL-2)

with durable complete remissions in a small percent of patients. Prior attempts to improve

IL-2 clinical outcome with the addition of other agents or effector cells have failed (5–8, 12,

13). New directed therapies, such as bevacizumab, sorafenib, sunitinib, and temsirolimus,

have had significant effect on survival of mRCC patients and are used as first-line therapy in

many centers. However, they rarely induce durable complete remissions (8–11).

A major obstacle for cancer immunotherapy is tolerogenic pathways that involve regulatory

cells and immunosuppressive cytokines (14–16). IL-2 mobilizes not only immune effector

cells capable of  destroying cancer but also expands CD4
+
CD25

+
FoxP3

+
 regulatory cells,

which modify the immune response. Dendritic cells (DC), the most potent antigen-presenting

cells,  are  able  to  activate  proinflammatory  tumor–specific  immune  pathways  as  well  as

disrupt regulatory pathways (17–24). However, clinical responses to DC vaccine (DCV) alone

given by different  routes  have  been limited.  Intranodal  injection seems  to  be  the  most

effective delivery method for these cells  (25, 26). IL-2 and IFN-α  can also contribute  to

overcoming other dysfunctional immune pathways. IL-2 can rectify acquired T-cell receptor

signaling defects seen in cancer patients. IFN-α enhances tumor immunogenicity by inducing

expression of  MHC molecules and tumor-associated antigens, and can enhance DC and

T-cell function (27–29). The balance between stimulatory and regulatory immune pathways

may  explain,  in  part,  the  low response  rates  observed  with  immunotherapy  of  mRCC

(30–34).

We hypothesized that immunotherapy using intranodal DCV, IL-2, and IFN-α2a could exploit

immune pathways to enhance therapeutic benefit. We report the results of  a phase II  trial

using this approach.

Materials and Methods

Patients

The study was approved by Dartmouth Medical School's  Committee for the Protection of

Human Subjects  and  the  U.S.A. Food  and  Drug Administration (IND BB 11162). Eligible

patients were ages ≥18 y, had measurable disease and newly progressive metastatic or new

metastatic  disease,  adequate  end-organ  function,  sufficient  tumor  tissue  for  vaccine

preparation, and signed informed consent. Individuals with a history of brain metastases, HIV

disease, hepatitis  B/C, autoimmune disease, required the use of  corticosteroids  or other

immunosuppressive agents, or had prior treatment with IFN-α, IL-2, or autologous vaccine,

were excluded.

Treatment

Treatment consisted of two induction cycles of IL-2/IFN-α 2a given on days 1 and 14, and

three  maintenance  cycle  weeks  every 28  d, consistent with the  well-established  Negrier

regimen (12). IL-2 (Chiron, Inc.) was administered by continuous infusion (18 × 10
6
 IU/M

2
 for

120 h). IFN-α 2a (6 MIU; Hofman La Roche) was given s.c. every other day for three doses

(Table 1). Dose reductions followed the National Cancer Institute Common Toxicity Scoring

System. IL-2 was stopped for hypotension, atrial fibrillation, renal failure, respiratory distress,

mental confusion, and metabolic acidosis. IL-2 was restarted at 75% of the dose at the time

of  the next cycle. For recurring toxicity, the dose was cut in half  (37.5% of  original dose).

Similar dose modifications were made for IFN-α 2a for liver and renal toxicity as well as atrial

fibrillation.

Table 1.

Treatment scheme: Days of therapy

and timing of administering each

component of treatment during the induction and maintenance phases

Leukapheresis for DC preparation was done before treatment and before each maintenance

cycle. DCV (1 × 10
7
 DCs in 1 mL Lactated Ringer's Solution) was given intranodally under

ultrasound guidance on the day before starting IL-2/IFN-α 2a. No dose modifications were

permitted for DCV. Patients were allowed to continue with IFN-α 2a and vaccine therapy if
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IL-2 dose limiting toxicity occurred. Duration of vaccine treatment was limited by number of

DC available after leukapheresis. Cytokines were given according to protocol up to day 103.

Vaccine preparation

Monocyte precursors were enriched from pheresis product using elutriation (patient 1-15) or

an anti-CD14 antibody magnetic bead and CliniMacs platform (patient 16-18; Miltenyi Biotec,

Inc.). Elutriated monocytes were cultured in AIM-V serum–free media for 9 d with 500 IU/mL

granulocyte macrophage colony-stimulating factor (Berlex, Inc.) and 20 ng/mL IL-4 (R & D

Systems; day 0, 3, and 6), tumor lysate (1-3 tumor cell equivalents per DC; day 5), and 50

ng/mL tumor necrosis factor α (R & D System; day 6). CliniMacs enriched monocytes were

cultured in X-Vivo 15 media with 1% heat inactivated autologous serum for 8 d with 1,000

IU/mL granulocyte macrophage colony-stimulating factor and 40 ng/mL IL-4 (day 0, 3, and

6), tumor lysate (1-3 tumor cell equivalents per DC; day 5), and 50 ng/mL tumor necrosis

factorα and 1 µg/mL PGE2 (Sigma; day 7). The change to CliniMacs purification allowed a

closed  system  for  DC  preparation  and  for  greater  monocyte  cell  purification.  Freeze-

fractured  and  irradiated  tumor lysate  was  obtained  from  mechanically  and  enzymatically

treated fresh tissue. Frozen DCs from preparation of vaccine #1, stored in 90% autologous

serum and 10% DMSO, were thawed and used for vaccine #2. Requirement for release of

the final DC preparation included >70% viability, negative sterility test from day 6 to 7 DC

culture, endotoxin test, and a negative gram stain.

Clinical assessment

Patients were assessed serially using computed tomography of chest, abdomen, and pelvis,

and technetium bone scan. Response was  determined by the National Cancer Institute's

Response Evaluation Criteria in Solid Tumors. Follow-up for responding and stable patients

occurred quarterly until progression or as clinically indicated.

Correlative immunologic studies

Lymphocyte subpopulations were characterized by standard five-color flow cytometry and

analyzed with FloJo software (35). Intracellular staining was done following cell fixation and

permeabilization (Il-4,  IFNγ)  and  intranuclear  staining  for  FoxP3  (Biolegend  FoxP3  kit).

Tumor specific T-cell proliferation was determined using the Dye Dilution Proliferation Assay

(36). Culture conditions included lymphocytes alone or combined with tumor lysate–loaded

and  unloaded  DCs,  Con A  (proliferation control),  and  Staphylococcus  aureus  B  (IFN-γ

control). Pretreatment, midtreatment, and posttreatment time points were evaluated for T-cell

receptor  function.  T-cell  receptor  function,  reported  in  lytic  units,  was  determined  by a

standard chromium release–redirected cytotoxicity assay using FcR-positive P815 tumor cell

targets, and anti-CD3 antibody (OKT3; ref. 37).

For T
REG

 function, CD4CD25
high

 (T
REG

) and  CD4CD25
−

 T-cells  (responder cells) were

isolated  using  the  Regulatory  T  Cell  Isolation  kit  (Miltenyi  Biotec).  T
REG

 function  was

determined by [
3
H]Thymidine uptake in cocultures of responder cells mixed with autologous

T
REG

 cells in the presence and absence of T-cell activation beads (anti-CD3, anti-CD28, and

anti-CD2: T Cell Activation/Expansion kit; Miltenyi Biotec; ref. 38). All experimental conditions

were done in triplicate.

Presence of  serum IgG and IgM anti-RCC antibodies was determined by flow cytometry

using allogeneic RCC cell lines (CAKI, ACHN, 769-P) and mouse anti-human IgG and IgM.

Presence of cell-bound serum antibody was detected using biotinylated goat anti Human IgG

or IgM secondary antibody and Streptavidin conjugated DTAF (Jackson Laboratories).

Serum was analyzed for 27 cytokines [IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10,

IL-12 (p70), IL-13, IL-15, IL-17, basic fibroblast growth factor, Eotaxin, granulocyte colony-

stimulating factor, granulocyte macrophage colony-stimulating factor, IFN-γ, IP-10, MCP-1

(MCAF),  MIP-1α,  MIP-1  β,  platelet-derived  growth factor–BB,  RANTES,  tumor  necrosis

factor-α, vascular endothelial growth factor] using the Luminex fluorescent bead technology

according to manufacturer's protocol.

Statistical methods

This  phase  II  trial  was  planned  as  a Simon two-stage  design to  detect  a 40%  overall

response rate (complete plus partial response) compared with a hypothesized response rate

of 20%. Institutional Review Board approval had been granted for the original study design,

but due to limitation of funds, only the first stage was completed. A 95% confidence interval

(CI) for the  overall  response  rate  was  determined based  on the  exact binomial method.

Progression-free survival (PFS) was defined as the time from study enrollment until disease

progression, or death. OS was defined as the time from study enrollment until death. PFS

and OS were censored at the date of last follow-up. The product-limit method was used to
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estimate survival curves corresponding to progression-free survival and OS.

Correlative immunologic studies were assessed using Student's t test. For precomparisons

and postcomparisons, paired t test was used. Mann-Whitney Rank Sum Test was used as a

nonparametric test for not normally distributed data.

Results

Patients

Eighteen mRCC patients were enrolled between January 2004 and August 2006. The patient

characteristics and outcomes are summarized in Table 2. Fourteen patients received greater

than or equal to three DC-vaccinations. One patient was removed from treatment before his

5th cycle due to autoimmune toxicity.

Table 2.

Patient characteristics and

response

DCV

Tumor lysate was prepared from primary tumors for 17 patients and nodal metastases for

one subject (patient #12). The mature DC phenotype (n = 48 vaccines) was reflected by a

mean percent positive value of 5.8 ± 10.0 for monocyte marker CD14, 60.5 ± 23.6 for DC

marker CD83, and 91.8 ± 13.0, 83.1 ± 22.8, and 82.7 ± 14.6 for MHC class II, CD80, and

CD86, respectively.

Toxicity

Significant clinical toxicities  were  related  to  IL-2  and  IFN-α2a (Table  3). Two  responding

patients  had  autoimmune  clinical syndromes (myocarditis, pneumonitis, and  nephritis  that

resolved over the subsequent 3 to 4 months; and parotitis).

Table 3.

Grade III and IV toxicity

Clinical response results

All patients were available for clinical assessment (Table 2). Follow-up ranged from 21 to

48+ months. Median PFS was 8 months (Fig. 1). The median OS has not been reached. A

total  of  9  objective  responses  were  noted  (50%;  95%  CI,  22fs66%):  three  complete

responses (CR), two >19.3 and >43.3 months; six partial responses (2.8-9.2 months); and

six stable disease (3.2-25.9 months). Responses were seen in lung, liver, mesentery, and

adrenal sites as well as a second primary renal tumor determined by biopsy after protocol

therapy. Signs of clinical response were observed after the first two cycles as well as after

completion of  treatment.  Histologic  subtypes  are  listed  in Table  2.  Patients  went  on to

receive targeted therapy as shown in Table 2.

Fig. 1.

Overall and progression free

survival: PFS:

Graphic, OS;

Graphic, PFS.

Correlative immunologic end points

A treatment-related increase in the precursor frequency of RCC-specific CD8
+
IFNγ

+
 T cells

was noted in peripheral blood lymphocytes [0.027 ± 0.055 (before) versus 0.082 ± 0.098

(after); P = 0.058]. No relationship with clinical response or PFS was identified.

The percentage of CD4 and CD8 T cells in the peripheral blood lymphocyte population did

not change as a result of  treatment, but the percentage of  CD3
−
CD56

+
 natural killer cells

increased during treatment [15.1 ± 10.3% (before) versus 23.1 ± 12.0% (after); P = 0.015;

Fig. 2A]. No significant changes were seen in the percentage of CD4
+
IFNγ

+
 Th1 cells in the

T-cell  population, but the percentage of  CD4
+
IL-4

+
 Th2 cells  increased with treatment in

responding patients [4.7 ± 1.4% (before) versus 13.1 ± 8.0% (after); P = 0.095; Fig. 2C].
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Fig. 2.

Treatment effect on lymphocyte cell

populations in the peripheral blood:

A, CD3, CD4, CD8, and natural

killer (CD3-CD56+) cells as percentage of peripheral blood lymphocytes. B,

IP-10 serum levels before and after therapy for all patients (n = 8) and prelevels

for responding patients (R; n = 4) and nonresponding patients (NR; n = 4). C,

CD4+ IL4+ T Cells (T
H2

) as a percentage of CD3+ lymphocytes for all patients (

Graphic), nonresponders (▪), and responding patients (□).

Cytokine multiplex results revealed a treatment-related increase in antiangiogenic factor and

TH1 cytokine IFN γ inducible protein 10 [IP-10: 126 ± 71 pg/mL (before) versus 521 ± 244

pg/mL  (after);  P  =  0.002;  Fig.  2B].  Responding  patients  had  higher  levels  of  IP-10  in

pretreatment serum than nonresponding patients (169 ± 68 pg/mL versus 83 ± 45 pg/mL; P

= 0.07).

CD8
+
 T cell T-cell receptor function was evaluated in 11 patients who received at least 3

vaccines (4 NR, 7 R). Overall, treatment-related lytic activity increased in CD8
+
 T cells by

33% but did not reach statistical significance.

We observed a treatment related increase in the percentage of CD4+CD25+FoxP3+ T
REG

cells in the lymphocyte population [2.0 ± 1.0% (before) versus 4.4 ± 2.7% (after); P = 0.002;

Fig. 3B].  T
REG

 cells  from six patients  tested  showed  suppressive  function. Surprisingly,

T
REG

 cells seem to suppress less effectively in responding versus nonresponding patients,

although this  may reflect  a less  brisk proliferative  response  in the  CD4-responding  cell

population (Fig. 3A).

Fig. 3.

A, T
reg

 cell functional assay (n = 6);

left, results of a proliferation assay

to quantify suppression of CD4

proliferation by T
reg

. Right, compares functional suppression in the responding

patients (□) and nonresponding patients

Graphic. B, percentage of T
reg

(CD4+CD25+FoxP3+) in the peripheral blood

lymphocyte population before and after treatment. C, comparison of the

percentage of circulating T
reg

 cells in the lymphocyte and CD3+ cell population

for responding (□) and nonresponding patients (▪) before and after treatment.

After  two  induction cycles,  nonresponders  (6.5  ± 2.7%) showed  a significantly stronger

expansion of Treg cells within the lymphocyte compartment than responding patients (2.7 ±

1.0%; P = 0.004). This difference was also true when Tregs were examined as a percentage

of the CD3 population (Fig. 3).

Treatment increased serum IgM anti-RCC antibody levels and led to a significant increase in

percent positive IgM staining on allogeneic tumor cell lines [22.1 ± 13.7% (before) versus

38.8  ± 21.7%  (after);  P  =  0.022].  However,  no  changes  in  IgG  antibody  levels  were

observed.

Discussion

Although the results  of  small  phase II  trials  have  significant limitations, we  found a 50%

overall  objective response rate (95% CI, 27-74%) and a 16% CR (95% CI, 0-34%) that

compares favorably to the historical observations of 16% overall objective response rate and

6% CR for high-dose IL-2 or IL-2 plus IFNα therapy (2–7, 12) and an 11% partial response

rate recently reported in a small phase I/II single agent autologous tumor lysate-DCV therapy

(39). The median time to progression (8 months) seen in this trial also compares favorably

with recent reports of  targeted therapy (8, 9). Based on historical data from the Memorial

Sloan Kettering Cancer Institute and the University of California at Los Angeles Integrated

Staging System, we would have predicted a median survival of 13.8 months, and a 2- and

3-year survival of  38.8% and 29%, respectively. At this time, median survival of  these 18

patients  has  not  yet  been  reached  and  the  2-  and  3-year  survival  is  77%  and  70%,

respectively. OS data needs to be seen in the context of new directed therapies becoming

available during the follow-up time period.

Historically, cancer immune therapies have focused on stimulation of effector cells. Interest

in enhancing antitumor immune responses in cancer patients by inhibition of regulatory cells

has  resurged.  Modulation of  only one  component of  the  immune  equation induces  long

Clinical and Immunologic Effects of Intranodal Autologous Tumor Lysate... http://clincancerres.aacrjournals.org/content/15/15/4986.full

5 of 9 3/25/2013 10:05 PM



lasting  clinical benefit  in only a small  minority of  patients. We hypothesized that multiple

signals, which modulate both effector and regulatory functions, are necessary to  improve

immune therapy for cancer patients. In this study, we have shown that DCs, IL-2, and IFNα

enhance tumor-specific CD8
+
 effector cells. A statistically significant differential expansion

of treatment-induced peripheral blood T
REG

 cells favored a lower percentage of T
REG

 cells

in responding patients. This  finding of  T
REG

 correlation was unexpected. This supports a

T
REG

 cell  threshold  effect  on clinical  outcome  (40).  We  also  found  CD4
+

 IL-4
+
 tumor-

specific precursors increased in responding patients, suggesting a role for Th2 pathway. At

present, it is unclear what the significance of the association of this alternative pathway and

clinical outcome is and how it may be better exploited in the future.

Interestingly, we observed a treatment-related induction of IP-10, an antiangiogenic cytokine

and  chemoattractant  for  activated  T  cells,  natural  killer  cells,  and  monocytes  and  a

relationship between outcome and  pretreatment IP-10  serum levels. IP-10 expression in

RCC tumors has been described as a predictor of outcome, and shown to be induced by

IL-2  and  implicated  as  a  component  of  the  TH1  response  (41,  42).  Our  observation

reinforces the link between immune pathways and tumor angiogenesis and the potential to

modulate both these systems for effective therapy.

Until recently, antigen-specific  approaches have been limited by the lack of  RCC-specific

molecules. There are conflicting reports of clinical efficacy using immunodominant peptides

derived  from  carbonic  anhydrase-9  (43–45).  By using  tumor  lysate,  we  incorporated  a

broader repertoire  of  potential  tumor antigens, which may also  include  tumor-associated

nonprotein molecules. Use  of  cellular products  may also  reduce  the  likelihood  of  tumor

immune escape and expand the eligibility of participating patients.

Development  of  autoimmunity  with  immunotherapy  has  been  reported  in  other  studies

(46–48). The induction of severe clinical autoimmune-like phenomena in one patient with a

complete  and  durable  response  suggests  autoimmune  phenomena may be  a potential

surrogate marker of benefit.

Clinical responses were observed early and late in the treatment course suggesting there

may be a range of predispositions toward immune responsiveness. Our prior studies have

also implicated heterogeneity of  patients'  immune “readiness”  (49). Immune profiling may

ultimately define these states more clearly.

In conclusion, this study provides evidence that supports multitargeted immunotherapy for

mRCC as a means to regulate effector, regulatory, and angiogenic pathways. Furthermore,

elevated levels of circulating vascular endothelial growth factor have been shown to confer

poor prognosis in RCC and other solid tumors, and are associated with higher numbers of

circulating  immature  DCs  and  immunosuppression.  Vascular  endothelial  growth  factor

blockade can enhance Type-1 cytokine response and could be a reasonable addition to the

described DCV/IL-2/IFN regimen (40).

Deeper understanding  of  immune  pathways  and  the  interplay between different targeted

therapies provide promising avenues to investigate in future trials.
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