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Integrated Systems and Technologies

Kidney Tumor Biomarkers Revealed by Simultaneous
Multiple Matrix Metabolomics Analysis

Sheila Ganti1, Sandra L. Taylor2, Omran Abu Aboud1, Joy Yang3, Christopher Evans3,4, Michael V. Osier6,
Danny C. Alexander7, Kyoungmi Kim2, and Robert H. Weiss1,4,5

Abstract
Metabolomics is increasingly being used in cancer biology for biomarker discovery and identification of

potential novel therapeutic targets. However, a systematicmetabolomics study ofmultiple biofluids to determine
their interrelationships and to describe their use as tumor proxies is lacking. Using a mouse xenograft model of
kidney cancer, characterized by subcapsular implantation of Caki-1 clear cell human kidney cancer cells, we
examined tissue, serum, and urine all obtained simultaneously at baseline (urine) and at, or close to, animal
sacrifice (urine, tissue, and plasma). Uniform metabolomics analysis of all three "matrices" was accomplished
using gas chromatography– and liquid chromatography–mass spectrometry. Of all themetabolites identified (267
in tissue, 246 in serum, and 267 in urine), 89 were detected in all 3 matrices, and the majority was altered in the
same direction. Heat maps of individual metabolites showed that alterations in serum were more closely related
to tissue than was urine. Two metabolites, cinnamoylglycine and nicotinamide, were concordantly and
significantly (when corrected formultiple testing) altered in tissue and serum, and cysteine–glutathione disulfide
showed the highest change (232.4-fold in tissue) of anymetabolite. On the basis of these and other considerations,
three pathways were chosen for biologic validation of the metabolomic data, resulting in potential therapeutic
target identification. These data show that serum metabolomics analysis is a more accurate proxy for tissue
changes than urine and that tryptophan degradation (yielding anti-inflammatory metabolites) is highly
represented in renal cell carcinoma, and support the concept that PPAR-a antagonism may be a potential
therapeutic approach for this disease. Cancer Res; 72(14); 3471–9. �2012 AACR.

Introduction
The use of metabolomics to identify tumor biomarkers as

well as potential targets for therapy has entered mainstream
clinical medicine and is beginning to lead to payoffs in kidney
(1, 2), prostate (3), and pancreatic (4) cancer, as well as in
kidney disease in general (5). Although most of the existing
published studies in the field have focused on either tumor
tissue or a specific biofluid formetabolomics analysis, there are
limited available data examining the use of a biofluid to serve
as a proxy for tumor metabolomic changes through simulta-
neous examination of tissue in addition to several biofluids.

Because the ultimate purpose of a metabolite biomarker is to
reflect biochemistry of the tumor of interest, it is essential to
determine how metabolomic profile changes occurring in a
tumor are reflected in blood and urine.

To begin to address this question, as well as to extend our
ongoing work in kidney cancer metabolomics and biomarker
discovery, we used a xenograft mouse model of highly meta-
static renal cell carcinoma (RCC) represented by subcapsular
implantation of humanCaki-1 cells. This diseasemodel has the
advantage of closely recapitulating human RCC in that the
cancer cells are implanted under the renal capsule, using sham
surgery animals to control for any metabolic changes that
might occur after surgical stress. From thismodel, we obtained
terminal tissue, serum, and urine simultaneously, and we
carried out global metabolomics analysis on eachmatrix using
identical analytical platforms and run at the same time.

We now show that most of the identified metabolites that
were detected in all 3 matrices were concordant in their
direction of change and that blood serves as a more accurate
proxy of tissue change than does urine, as the magnitude of
metabolite changes in each matrix show a gradation from
tissue (most) to serum to urine (least). Consistent with other
published studies in RCC (1, 6, 7) and to further confirm the
veracity and consistency of our data, we biologically validated
several relevant pathways whose signatures were significantly
altered in one or several matrices, specifically the tryptophan
metabolism pathway, which is linked to immunosuppressive
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metabolites. In addition, from the finding that the 2 metabo-
lites, which were altered in all 3 matrices, are present in the
peroxisome proliferator pathway, the target receptor PPAR-a
was identified and validated in vitro. Thus, global metabolo-
mics of amouse xenograftmodel indicates that serum, and to a
lesser extent urine, show utility as proxies for tumoral metab-
olite changes. Furthermore, validation of several identified
altered pathways suggests that these could be further evalu-
ated as potential markers and therapeutic targets for this
disease.

Materials and Methods
Materials

Four human proximal tubule epithelial cancer cell lines,
ACHN, A498, 786-O, and Caki-1, and one "normal" derived
kidney epithelial cell line, HK-2, were obtained from the Amer-
ican Type Culture Collection (ATCC). Primary proximal renal
tubular epithelial cells (NHK) were from Lonza. All ATCC and
Lonza cell lines undergo extensive authentication tests during
the accessioning process as described in vendor websites.
ACHN, A498, and HK-2 cells were maintained in Dulbecco's
Modified Eagle's Medium, and Caki-1 and 786-O cells were
maintained in RPMI, all supplemented with 10% FBS and 100
units/mL streptomycin and 100 mg/mL penicillin. Cells were
maintained at 5% CO2 at 37�C. Lipopolysaccharide, 1-methyl-L-
tryptophan (1-MT), WY-14,643, GW6471, and b-actin anti-
mouse antibodywere purchased fromSigma. COX-2 anti-rabbit
antibody was generously provided by Daniel Hwang (USAD-
ARS, WHNRC, Davis, CA). Protease and phosphatase inhibitor
cocktail for immunoblotting was obtained from Promega.

Mouse subcapsular xenograft model
HumanCaki-1 cells (106) weremixedwith 30% of nongrowth

factor reduced Matrigel (BD) and injected into the right flanks
of 2 donor nude mice. After the tumors reached 500 mm3 of
size, micewere sacrificed and tumors excised to prepare tumor
cell suspension. Tumors were minced and passed through
70 mm Nylon cell strainer (BD Falcon) and washed with PBS
to collect cell pellets. Tumor cells were resuspended in 30%
Matrigel (106 cells/20mL/mouse) for renal subcapsular implan-
tation. Nude mice were anesthetized with isoflurane and the
kidneys were exteriorized for subcapsular injection. The sham
control group of mice received no injection of tumors. After
injection, the kidney was returned to the abdominal cavity and
the peritoneum and skin were closed by suture and metal
wound clips, respectively. All of the mice were sacrificed when
the xenografted animals became moribund, 34 days after
surgery. Kidney plus tumor size averaged 1.62 grams at sac-
rifice. Terminal serum was collected, and tumor (from xeno-
grafted animals) and normal kidneys (from sham surgery
animals) were removed and split for snap freezing and 10%
buffered formalinfixation at sacrifice. For urine, we collected at
2 time points, one day before surgery and 32 days after surgery
(2 days before sacrifice). From the frozen tissue, tumors were
dissected out from adjacent noncancerous tissue, and this as
well as sham control kidneys were subjected to nontargeted
metabolomic analysis.

MTT assay
A total of 5 � 104 cells were plated in 96-well plates and

incubated for 16 hours at 5% CO2 at 37�C. After appropriate
treatments, the cells were incubated in 20 mL of thiazolyl blue
tetrazolium bromide (MTT) solution (5 mg/mL in PBS) with
180 mL of the growth medium for 3 hours. Then, the MTT
solution was removed and the blue crystalline precipitate in
each well was dissolved in DMSO (dimethyl sulfoxide; 200 mL).
Visible absorbance of each well at 540 nmwas quantified using
a microplate reader.

Immunoblotting
Cells were treated with either vehicle, LPS, or 1-MT for 72

hours. The cells were then lysed, protein was collected, and
immunoblotting was carried out as previously described (8).

Nontargeted metabolomic analysis
The metabolomic platforms, including sample extraction

process, instrumentation configurations and conditions, and
software approaches for data handling, were previously
described in detail (1, 9). Urinary metabolite values were
creatinine normalized to account for urine concentration
differences among samples, and tissue samples were normal-
ized to equal mass before chromatographic analysis. Due to
space restrictions, these techniques are further described in
Supplementary Data.

Statistical methods
Processing of the raw data yielded 299 known metabolites

from tissue, 251 from serum and 274 from urine samples from
xenograft and sham surgerymice. For eachmatrix,metabolites
observed in fewer than 3 of the samples from each of the
experimental groups (xenograft and sham surgery) were
excluded. This screening resulted in 267, 246, and 267 meta-
bolites for tissue, serum, and urine, respectively, that were
subsequently statistically analyzed. Missing metabolite values
were imputed using the minimum observed metabolite value.
Before statistical analyses, metabolite intensities were log
(base 2) transformed to meet underlying assumptions of
normalitywith a constant variance and to reduce the dominant
effect of extreme values. Before log transformation, urinary
metabolite values were creatinine normalized to account for
urine concentration differences among samples.

The primary objective of the statistical analysis was to
identity metabolites in each matrix whose concentration dif-
ferentiates xenograft and sham surgery mice that potentially
could serve as diagnostic biomarkers for kidney cancer as well
as to elucidate alterations of metabolite signals in pathways
associated with the presence of kidney cancer. To identify
metabolites as potential diagnostic biomarkers for mice with
kidney cancer, we aimed to (i) identify metabolites that dis-
tinguish xenograft and sham surgery mice using differential
analysis, and (ii) identify sets of relevant metabolites that act
synergistically within functionally defined pathways using
functional score analysis.

For each tissue and serum metabolite, we identified differ-
entially expressed metabolites between xenograft mice and
sham surgery mice using t tests. For urine, because we
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measured twice 1 day before surgery and 32 days after surgery
from the same animals, we used an analysis of covariance
to identify differentially regulated metabolites, modeling
postsurgery metabolite values as a function of cancer status,
with presurgery metabolite values included as a covariate.
Significance was determined based on a permutation null
distribution consisting of 6,435 permutations for tissue and
serum and 3,432 permutations for urine. The number of
permutations was lower for urine because we had one less
sample (i.e., urine samples from 8 xenograft mice and 7 sham
surgery mice) available for the statistical analysis. False dis-
covery rates (FDR) were also calculated to account formultiple
testing. We also conducted a partial least squares (PLS)
regression analysis for each matrix separately using all meta-
bolites. For urine, we used the postsurgery values only for
consistency with the other matrices. Leave-one-out cross-
validation was conducted using up to 10 latent components.
R2 was calculated as a measure of the amount of variability
explained by the PLS regression, whereas the Q2 values were a
measure of the predictive error of the regression. For each
metabolite, the variable importance in the projection (VIP)
score was calculated to determine a metabolite's influence
on predicting the outcome as well as its weight in the predictor
matrix, while considering the presence of multicollinearity
among metabolites.

Results
Metabolomic analysis of all 3 matrices shows
similarities among matrices
Eight nude mice were implanted with Caki-1 cells under the

renal capsule, and 7 control mice of identical genetic back-
ground were subjected to sham surgery. Urines were collected
one day before surgery and 32 days after surgery (i.e., 2 days
before sacrifice). Blood (as serum) and kidney tissue were
obtained simultaneously from all animals at sacrifice (34 days
after surgery); the tumorþ kidneyweights at sacrifice averaged
are given in Supplementary Table S1. All samples were sub-
jected to simultaneous global metabolomics analysis by liquid
chromatography (LC)- and gas chromatography–mass spec-
trometry (GC–MS) as described in Materials and Methods and
Supplementary Data. The 267 metabolites identified from
tissue, 246 from serum, and 267 from urine were used for
further downstream analyses. As expected, many of the meta-
bolites identified in one matrix were also found in the other(s).
Of the suite of identified metabolites, 89 were detected in all 3
matrices (Fig. 1). Tissue and serum had the most identified
metabolites in common, with 174 metabolites identified in
both of these matrices. Interestingly, urine had fewer meta-
bolites in common with the other matrices and had the largest
number (122) of uniquemetabolites. Thus, there exists a closer
link between tissue and serummetabolic profiles than between
tissue and urine.
One goal of a biofluid study for biomarker discovery, espe-

cially in kidney cancer, is to determine whether easily acces-
sible fluids (blood and urine in this case) can serve as proxies
for what is occurring in the tumor tissue. About two-thirds of
the 89 metabolites found in all 3 matrices were altered in the

same direction (Table 1) supporting the hypothesis that met-
abolic changes in tissue are reflected in serum and urine.
Notably, about one-third of the metabolites were altered in
the opposite direction in biofluids as compared with tissue.
Thus, although consistent changes in some metabolites can
potentially be traced through all 3 matrices, other metabolites
show differential regulation patterns, which may be consistent
with the existence of nodes or convergence points inmetabolic
pathways.

Although most metabolites were altered in the same direc-
tion across the 3 matrices, metabolic differences between
xenograft and sham surgery mice were most pronounced in
tissue followed by serum and urine (Fig. 2). When metabolite
changes in cancer versus control animals were compared using
heat map visualization, it became obvious that differences in
tissue metabolites between cancer and control are more
pronounced than these differences in serum or in urine
(Fig. 3A–C). This observation was also supported by R2 and
Q2 values adapted to evaluate the prediction performance of
PLS (Supplementary Table S2). R2 values were high for all the 3
matrices when we used the first 2 or more components,
suggesting the model fitness is good. Q2 values for serum were
considerably smaller than for tissue but higher than urine. The
finding that serum changes between cancer and control ani-
mals are moremarked than urine is expected, because blood is
in intimate contact with the tumor because of its abundant
angiogenesis (especially in RCC), and urine is subjected to
additional processing of the plasma by the kidneys.

Tissue Serum

Urine

122

49

23

60

33

85

89

Figure 1. Venn diagram of all identified metabolites in each matrix. Tissue
and the indicated biofluids were analyzed by GC- and LC-MS and those
metabolites identified in each of the 3 matrices are shown.

Table 1. Number of metabolites altered in
the same direction (concordant) and opposite
direction (discordant) between tissue, serum,
and urine

Tissue vs.
serum

Tissue vs.
urine

Serum vs.
urine

Concordant 60 58 61
Discordant 29 31 28

Multiple Matrix Metabolomics Analysis of Kidney Cancer
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Intermatrix comparison reveals common biochemical
function among matrices

Metabolites with large changes in tissue and showing con-
cordant and detectable changes in serum and/or urine are the
most logical candidates for potential biomarkers. Consequent-
ly, to evaluate specific metabolites as potential biomarkers, we
next identified metabolites that significantly differed between
xenograft and sham surgery control mice but with particular
attention to shared metabolites altered in the same direction
(i.e., concordant) among all matrices. Tissue had the largest
number of differentially regulated metabolites with 186 of
the 267 metabolites in this matrix differing significantly at
FDR < 0.05 between xenograft and sham surgery mice (Sup-
plementary Table S3A). In serum, 76 of 246 differed signifi-
cantly at FDR < 0.05 (Supplementary Table S3B) and in urine,
no metabolites were statistically significantly different (Sup-
plementary Table S3C). The VIP scores obtained by the PLS
regression for selecting most relevant metabolites, which have
a significant effect on separation between sham surgery and
control samples, were in agreement with the (FDR) P values
from the differential analysis in terms of significance (Supple-
mentary Table S4). Interestingly, urine has higher VIP scores
compared with tissue and serum, which implies a lower
proportion of relevant metabolites or a higher magnitude of
correlation among metabolites with similar effects on the
separation.

When examined across all 3 matrices, 5 metabolites
(cinnamoylglycine, glucose, nicotinamide, phenylpropio-
noylglycine, and valine) were significantly downregulated
in tissue and serum at FDR < 0.05 and close to significance
in urine, all with FDR < 0.1 and raw P value less than 0.01
(Fig. 4A). Looking at tissue and plasma together, there were a
plethora of metabolites that were significantly and concor-
dantly altered in these matrices, including 2 metabolites

that are regulated by modulators of PPAR-a (nicotinamide
and cinnamoylglycine; Fig. 4B). These findings suggested
modulation of specific pathways by the presence of the
tumor and thus identification of potential therapeutic tar-
gets (see below).

Validation of tissue pathways supports veracity
of the metabolomics data

In any high-throughput metabolomics study, key meta-
bolic pathways, as suggested by statistical significance, need
to be validated in benchtop experiments to ensure the
veracity of the metabolomics data and to identify biologic
correlates. Rationales for selection of metabolites in the
discovery stage for further validation can include statistical
significance and/or biologic evidence, such as the relative
changes of metabolite expression in cancer compared with
control or functional relevance of the metabolites as evi-
denced by their involvement in the same pathway. For such
validation, we have chosen 2 separate pathways or meta-
bolites based on the findings as discussed above: (i) the
PPAR-a pathway that is associated with the metabolites
that were significantly altered in tissue and serum at FDR <
0.05 and in urine using less stringent FDR < 0.1 and raw
P value less than 0.01 (cinnamoylglycine and nicotinamide);
and (ii) the tryptophan degradation pathway in which we
have seen significant changes in metabolites in human urine
(2) as well as in the mouse tissue described here.

PPAR-a modulation results in alteration of cell growth
As mentioned above, nicotinamide and cinnamoylglycine

were 2 of the 5 significantly and concordantly changed (atten-
uated) in association with the cancer state in all 3 matrices (by
FDR < 0.05 in tissue and blood and by FDR < 0.1 in urine; Fig. 4),
and these compounds are altered by peroxisome proliferators.
The PPAR-a pathway is known to regulate key enzymes of the
tryptophan pathway (10) that leads, through quinolinate
(found elevated in a previous study; ref. 1), to production of
NADþ. NADþ is a strong reducing agent and is involved to a
large degree with cellular energetics and other electron donor
processes. Animals fed the PPAR-a agonist Wy-14,643 showed
altered urinary levels of nicotinamide and cinnamoylglycine
(11). Relevant to RCC, other investigators used siRNA to
attenuate PPAR-a in Caki-1 cells to show that this receptor
regulates genes involved in fatty acid metabolism (12). These
findings suggested that PPAR-a may be involved in tumor
promotion or attenuation and prompted us to explore this
nuclear receptor as a possible target in RCC. When incubated
with several RCC cell lines, as well as a "normal" renal tubular
epithelial cell line (HK-2) and primary RTE cells (NHK), the
PPAR-a agonistWy-14,643 increased cell proliferationwhereas
the PPAR-a antagonist GW6471 had the opposite effect and
was considerably more pronounced (Fig. 5). To recapitulate
these data in cells, we used the Caki-1 cell line and showed the
expected effects of the PPAR-a agonist Wy-14,643 upon tryp-
tophan and nicotinamide levels (refs. 11, 13; Supplementary
Fig. S1). Thus, PPAR-amay be a viable target for RCC therapy
with PPAR-a antagonism resulting in significant inhibition of
cell proliferation.
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Attenuation of the tryptophan degradation pathway
results in higher levels of inflammatory markers and
may contribute to immune escape
By metabolomics analysis of tumor tissue, the tryptophan

level was significantly lower (0.69-fold, FDR¼ 0.0024), and the
downstream metabolite kynurenine was significantly elevated
(2.78-fold, FDR ¼ 0.0008) compared with controls. Our previ-
ous study using human urine showed that quinolinate, another
downstream metabolite in addition to kynurenine, was ele-
vated in human RCC (1). Taken together, these data indicated
that tryptophan metabolism is increased in RCC, resulting in
the decrease of tryptophan and the accumulation of down-

stream metabolites in xenograft tumor tissue and serum and
the accumulation of such metabolites in human urine.

In our earlier metabolomics and proteomics studies, we
have frequently observed altered tryptophanmetabolism (1, 7).
It has been shown that increased tryptophan metabolism is
associated with both decreased proliferation of T cells and a
reduced immune response, mediated by the enzyme indolea-
mine-2,3-dioxygenase (IDO; refs. 14, 15); patients with ovarian,
endometrial, hepatocellular, and colorectal carcinomas have
all been shown to have chronically activated IDO (14). Thus, to
further validate the metabolomics data (in addition to our
previously published work cited above), we reduced the
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Figure 3. Heat maps for each matrix of the 89 metabolites
in common. The color of each section is proportional to the
significance of change of metabolites (red, upregulated;
blue, downregulated) in tissue (A), serum (B), and urine (C).
Tissue and serum values are z-scores of raw intensities of
each metabolite. For urine, values are z-scores of
creatinine-normalized metabolite intensities in urine
obtained 2 days before sacrifice in both cancer and
corresponding control animals.
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accumulation of the downstream metabolites by inhibiting
IDO and assessed the inflammatory response in the tumor
cells. RCC cell lines were treatedwith the specific IDO inhibitor
1-MT and COX2 induction, as a measure of inflammation (16),
was detected by immunoblot (Fig. 6). A dose of 200mmol/L of 1-
MT significantly induced COX2 expression in A498 and ACHN
cancer cells, thus decreased tryptophan metabolism mediated
by IDO promotes inflammation. In addition, using an ACHN
cell culture model, we showed a slight dose–dependent
increase in tryptophan in cells treated with 1-MT (Supplemen-
tary Fig. S2), supporting the importance of this pathway in
RCC. The changes in the cell lineswere less pronounced than in
the tissue, given the considerably lower number of cells in the
former compared with the latter. These results in aggregate
suggested that RCC tumors prevent an inflammatory response
by increasing tryptophan metabolism, a means by which RCC
is able to evade immune surveillance.

Discussion
The clinical use of omics technologies in cancer research has

evolved from the direct evaluation of tumor tissue searching
for prognostic markers to the use of biofluids as proxies for
changes in the cancer of interest. Although it is clear that the
latter approach is more readily translatable to the clinical
setting, there are no currently available studies showing the use
or accuracy of biofluids as a reflection ofmetabolomic changes

within tumor tissue. That a specific biofluid can reflect met-
abolic changes in a cancer is a reasonable assumption because
the concept behind the use of the clinical laboratory for blood
chemistries assumes that tests for liver and kidney function, for
example, accurately reflect changes that are occurring in these
organs. Consistent with this concept, recent metabolomics
studies, including some from our laboratory, have assumed
that changes in the blood and urine metabolomes accurately
reflect alterations in metabolic processes that are occurring
in the tumor itself (as well as in any systemic effects of the
malignancy), but before this study, this assumption has not
been validated. For these reasons, we have undertaken a
comprehensive metabolomics analysis of tissue, blood, and
urine taken simultaneously from an anatomically accurate
RCC mouse xenograft model. In light of the data obtained
from this study, it is evident that blood is a decent proxy of
tumoral metabolomic changes, whereas urine is less reflective
of such changes.

Some of the suite of metabolomic changes seen here can be
correlated to changes in metabolic pathways. In particular,
glycolysis and the citric acid cycle are involved in the Warburg
effect, and the examination of individual metabolites in these
pathways shows that citrate, which is 21-fold increased in
cancer tissue (FDR P value¼ 0.0005), is also increased in urine
(although nonsignificantly in this study) as a possible tissue
proxy. It is highly likely that, although tissue glycolysis is
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elevated in our analysis consistent with the Warburg effect, it
is being shunted into biosynthetic pathways rather than
through the citric acid cycle as is evidenced by significantly
lower tumor levels of fumarate (0.6525-fold, FDR¼ 0.0029; see
Supplementary Table S2A). In addition, the acylcarnitines,
which we have shown to be increased in the urine of RCC
patients (17), were found to be increased consistently in tissue
(e.g., acetylcarnitine increased 3.2016-fold, FDR ¼ 0.0005;
butyrylcarnitine increased 19.2149-fold, FDR¼ 0.0005) but not
in serum and urine in the xenograft model, highlighting a
difference between mouse and human. Nonetheless, the data
from this study support our earlier data (17) and indicate that
human urinary acylcarnitines are excellent proxies of tissue
changes and, for this reason, could be developed further as
potential biomarkers.
Among all measured metabolites, the compound that had

the highest magnitude of change was tissue cysteine–gluta-
thione disulfide (CSSG), whichwas 232.4 times higher in cancer
(FDR ¼ 0.0005). Although also identified in serum, this com-
pound was not significantly changed in that matrix and was
below the detection limit in urine. Elevated levels of CSSG and
GSSG are a signature of oxidative stress and, in light of the
finding of significant changes in CSSG, GSSG, and GSH in the

xenograft tissue, implicate the oxidative stress pathway as
being important in kidney cancer, as has been reported by
others in RCC cell lines in general (18). However, in urine and
serum, these signature metabolites were below the limit of
detection and thus, although an important pathway in cancer,
glutathione and the oxidative stress pathways are unlikely
capable of being biofluid proxies of tumor tissue events or
biomarkers or RCC.

The PPARs belong to the nuclear hormone receptor super-
family and are involved in the transcriptional activation of
many target genes regulating energy metabolism, adipogen-
esis, angiogenesis, cell proliferation, and inflammation (19).
The PPAR family consists of 3 subunits (a, b/d, and g) that
heterodimerize with the retinoic acid receptor (RXR) and bind
to DNA to either activate or repress expression of a variety of
inflammation-related genes (19). PPAR-a is expressed in many
tissues, but it is found at particularly high levels in tissues that
require fatty acid oxidation as a source of energy such as liver,
kidney, and heart, consistent with its known physiologic role
(20); its signature was detected in all 3 matrices in our study.
Consistent with our findings that a PPAR-a agonist increases
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RCC cell growth, administration of the agonist WY-14,643 has
been shown to significantly induce proliferation of the breast
cancer cell linesMCF-7 andMDA-MB-231 (21). It has also been
proven that long-term feeding of Wy-14,643 caused a 100%
incidence of liver tumors in wild-type mice, whereas PPAR-
a-null mice was refractory to the same treatment (22). Other
PPAR-a agonists such as chlorinated paraffin (C12), cinnamyl
anthranilate, perchloroethylene, and trichloroethylene also
caused kidney tumors in rats (23). In accordance with the
previous studies, our results parallel effects with a PPAR-a
agonist and antagonist. A previous study with humans showed
that administration of Wy-14,643 significantly attenuated uri-
nary cinnamoylglycine (9-fold; ref. 11), a finding that is in
agreement with our observations about this metabolite. Atten-
uation of the PPAR-a pathway may therefore present a novel
therapy in treating not only kidney cancer, as evidenced by our
data, but also other solid tumors.

The metabolites in the tryptophan and nicotinamide path-
ways were well represented in the tumor tissue and intersect at
the metabolite quinolinate. We have regularly observed tryp-
tophan metabolites and an altered tryptophan metabolism
pathway in our RCC metabolomics and proteomics studies
(1, 7), and other investigators have observed a decrease in
serum tryptophan in RCCs of all grades (24), similar to what we
have observed in this study. In addition to being elevated in
mouse tissue and human urine, one of these metabolites,
quinolinate, stimulates proliferation of some ccRCC cell lines
(1). Perhaps more importantly, IDO, which catalyzes in early
step in tryptophan metabolism, regulates conversion of tryp-
tophan to immunosuppressive metabolites that could work to
the tumor's advantage (15). Here we show that inhibition of
IDO produces an inflammatory response in ccRCC cell lines,
likely by increasing tryptophan metabolites, as evidenced by
increased COX2 levels in 2 RCC cell lines. Thus, the tryptophan
metabolites that we have observed in urine and tissue could
have mechanistic functions in addition to being potential
biomarkers. The mechanism of immune suppression by tryp-
tophan metabolites has been extensively studied in immune
cells in pregnancy (25) and, to a lesser extent, in solid tumors
(26). A very recent study in mouse gastrointestinal stromal
tumors (GIST) showed that imatinib therapy induced apopto-
sis within GIST tumors by reducing tumor-cell expression of
IDO (15), an event likely associated with decreased immuno-

suppressive metabolites. Even though our data show that
tryptophanmetabolism seems to be increased in ccRCC tissue,
nicotinamide metabolism is decreased. This could be attrib-
uted to usage of nicotinamide as an electron scavenger (27)
and/or to its function to promote cell viability and reduce
inflammation (28).

There is always justifiable concern that any study in rodents
may have limited applicability to human medicine. We have
tried to mitigate these concerns in several ways. Most impor-
tantly, our xenograft model is based on subcapsular implan-
tation of a human RCC cell line; such placement recapitulates
the anatomy of the human tumor and would be expected to
have similar access to blood and urine as would occur in RCC
patients. In addition, the control animals were subjected to
sham surgery and kidneys from these animals, rather than
contralateral kidneys from the cancer animals, were used as
controls to minimize systemic tumor effects that would likely
be seen in the contralateral tissue. For the metabolomics
analyses, we have used identical platforms as was used in our
previous studies in human urine (1, 2), allowing relationships
to be accurately made between species.

In summary, this study represents for the first time a
comprehensive metabolomics evaluation of cancer, including
tumor tissue as well as the 2 most significant and commonly
accessed biofluids, serum and urine. Data presented here show
that, not unexpectedly, in kidney cancer blood is a better proxy
for tumoral changes than is urine. Furthermore, we have used
pathway and network analysis to discover and validate several
importantmetabolic processes thatmay result in the discovery
of novel diagnostic targets and therapeutic approaches for
ccRCC.
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