Recurrence? Is There an App for That–or a Medicine?

Being diagnosed with kidney cancer is a stunner.  Facing surgery and endless, oft unanswered questions changes your life.  Patients with small tumors, easily removed, are often told not to worry about it coming back.  Of course, there is ALWAYS the possibility that even small “I got it all tumors” can recur.  Sadly, the current guidelines fail to catch about 30% of recurrences, using the 2013, 2014 guidelines.  These guidelines were from an earlier era, where there were fewer small tumors found, so there was data lacking on long-term follow-up.

We patients ask? “Why not just take the meds that the patients with metastatic disease do?  Wouldn’t that prevent it from coming back?  If it works to fight the mets, why wouldn’t it prevent new ones from getting a foothold? “

Why not use the meds that they use now against metastatic disease? Why wouldn’t that work?  Have they tested that idea?

In February of 2015, a study was released which comparing patient response to 1) sunitinib (Sutent),2) sorafenib (Nexavar), or 3) placebo (no real medicine).  This  three-arm study included 1,943 patients who had locally advanced clear cell and non-clear cell histology RCCs. They were thought to be at high-risk for recurrence of their cancer, and might benefit from “adjuvant” therapy.  The researchers hoped that they would see a 25% improvement in time to recurrence of disease with the meds vs no meds.. That would means that the typical 5.8 years median Disease Free Survival (DFS) would go to 7.7 years.

Sadly, there was no benefit to taking the active drugs compared to the placebo.  More sad is that the patients had side effects associated with the drug, referred to as “adverse events”. In fact, many dropped out of the active agent arms into the placebo arm, certainly knowing that the med they were taking were anti-cancer meds.  Those “adverse events”, severe fatigue, hypertension or hand-foot reactions, were observed in those taking the active agents and rarely in the placebo patients.

The median time on the drugs was 8 months.  That means half the patients  were on drugs more than 8 months and half were on the drugs less than 8 months.  Even those patients starting with lower doses of the drugs fared worse than the placebo group.

Despite taking the medications and enduring the side effects, the recurrence was about the same.   With medication or without, these patients, as groups, did the same.  Those taking the meds had Disease Free Survival of 5.6 or 5.7 years, similar to those not taking any real meds.  There was no real added benefit to these patients.  Certainly the quality of the life was affected by the side effects, and the constant reminder of the spectre of more cancer.

What can patients learn from this study?

The fear of recurrence is real. After all, the expected time until the disease progressed (love using that term for cancer!), was about 5 1/2 years.  These patients were carefully monitored with CTs on a regular basis, which caught their recurrences as soon as possible. Had they not been in this trial, it is reasonable to expect that many would not have received those scans and not know of the recurrence as it happened.

The reality is that the typical patient may or may not continue to be monitored. Even those who passed the 5 1/2 year mark without recurrence may not realize that RCC can come back.  Again, 30% of recurrences in small, non-metastatic disease are not caught.  One can assume that the higher risk group in this trial would also be at risk for that level of recurrence.

Take-home message: At present, nothing has been shown to prevent recurrence of this locally advanced disease. Even the non-metastatic small tumors that have sent out invisible “wanna-be mets”, and no one can yet guess who is at the most risk.

The best approach is to monitor yourself and your general health and to demand CT scans, especially in the lungs, where metastatic RCC is most likely to start.  That does NOT mean an x-ray, as those mets would have to be about 1/4″ in order to be seen.  My own lung mets were under that size when first found, but there were hundreds of them, and they grew quickly.  Not visible on an x-ray, but growing every day.

Despite the disappointing study above, the ASSURE study, more clinical trials are recruiting patients for similar studies using drugs that have already been shown to be less active than those in the ASSURE study.  I would be cautious in getting into such a trial, and would spend my energies seeing that my monitoring is extended at least until 10 years past my surgery–even with those “got it all” primary tumors.








Leave a Comment

Filed under Clinical Trials, FDA Meds & Trials, Guidelines, Medications, Targeted Therapies, Uncategorized, Your Role

“Got It All!” or “Gotcha!” The Guessing Game…

No one wants to look for extra trouble after having been diagnosed with kidney cancer, even if the tumor is small.  Horrified already by the cancer, it is more horrifying to realize that there are no guarantees, even when told by a reassuring surgeon that he “got it all”.  The reality is that even small masses can have sent out cells to other sites, in the rest of the kidney, should it have remained, or to distant sites.  (In cancer, ‘distant’ is never as distant as it should be, as that means there is cancer in some area away from the primary tumor.  Could be lungs, bones or brain, sorry to say.) So now what do you do?  And what can you do?

With the more sensitive imaging techniques, x ray, ultrasound, CT scans, and MRIs, more smaller tumors are being found.  The hope is that finding and removing them will be completely curative, and there are plenty of papers to say that is the case.  But is it really true?  Unfortunately, finding tumors sooner also means that they may need to be “followed” or monitored longer than has been done in the past.

Consider the situation where a tumor about 2 inches in size is found, and scheduled to be monitored for five years.  Though with no symptoms, the patient gets that “last” scan, only to find a newly visible met. Not visible at the year four scan, it may have been slowly growing , unseen for 2-3 years  There may be further monitoring, and perhaps a surgery to remove it or one of the newer drugs is given, in hopes of downsizing or stabilizing the met. Happily the five year plan worked to catch this one.

Had that same tumor been found two years earlier, maybe just 1 inch in size, and monitored for five years, no further met would have been found.  The monitoring may well stop at five years, while the slow-growing met continues to grow, still not visible to the scan. It may only be symptoms at year 7 or 8 which brings the patient back to the doctor, and this time with larger and perhaps more mets, not visible at the year five.

Older monitoring schedules were based on the low and grim expectations for kidney cancer patients. There was little thought to tracking patients for more than five years. After five years there weren’t that many patients!

With earlier detection, and more treatment options, now is the time to review monitoring to capture recurrent disease, which we patient call, “It came back.”

We do look to the five year mark, thrilled to have made it, especially so if we have been cancer-free. Not quite like graduation, but more like the beginning of summer vacation.  But we (and our doctors) must be reminded to keep checking back in with the school principal/CT scan. We need to be sure no leftover bunch of cancer cells have become a measurable metastasis.

Let’s talk about size, as it really matters.  So does the attitude–aggressive or indolent–of the cells of  even the tiniest tumors.  Some may well have sent out their own colonists, looking for areas to set up housekeeping.  Clear cell RCC most often goes to the lungs, so lungs deserve close attention. X-rays can only see a pea-sized met, about 1 centimeter in size, so a CT scan, with and without contrast is best to find new mets.

What are the chances of finding mets, either sooner or later, with a small renal mass?  Lots of stats and some terminology here, so take notes as needed. Better yet,  grab your own post-surgery report, or the imaging reports so you know where you stand.

Measuring Small Renal Masses

Primary kidney tumors are measured on a T (for primary Tumor) scale that runs from TX–no primary tumor found, to T4, which is any tumor 10cm or larger(There are 2.54cm to the inch, so that is 10cm/2.54cm=3.9 inches.  Think four inches, and remember that it can be shaped like a potato, not a ball or a pancake. They can be measured  at a different spots in different scans. That is why measurements can vary from report to report.

T1 tumors are divided into T1a and T1b, and are limited to the kidney.  T1a tumors can be up to 4cm in size, using the largest dimension. Officially this is the small renal mass. Volume counts in the real world, but a 4cm x  2cm will be described as the same size as a 4cm x 4cm tumor.

Tumors which are named at T1b size are still limited to the tumor, but can be up to 7cm in the longest dimension, so about 2 3/4 inches long. The officially small renal masses   No longer described as small, it SOUNDS small by the name.  Assuming that there is no other evidence of cancer outside these masses, this is Stage I cancer. Given the grade of the biopsied tumor, it may be considered to be low or high grade, which is a measure of the aggressive nature of the tumor.

Tumors in the T2 range are also divided into T2a and T2b.  These are still limited to the kidney, with the division at the 7cm mark. T2a tumors are over 7 centimeters (think 3+ inches), and up to  10 centimeters, nearly 4 inches









Leave a Comment

Filed under Guidelines, RCC Basics

SmartPatients; Patients Helping Other Patients

Though I was lucky to receive good care, after eight precious months working with a specialist trying to figure out why I went from healthy to damned ill, it was more than good medical care that saved my life.  Being diagnosed with a terminal illness is terrifying and isolating.   I felt alone in a wash of pink ribbons, without anyone who understood my disease process and how to deal with it.  Who gets kidney cancer?!

By some internet miracle, and at the depth of my horror at the prognosis I faced, I found ACOR–Association of Cancer Online Resources–now called    These were other patients who provided both TLC and education that I so desperately needed. Moderated by intelligent and experienced patients and caregivers who knew what had happened to me.  What I did not get was someone telling me that I had gotten sick for failure to buy their supplement or for leading a dissolute life!

I wrote a simple distress call online, that I just had a nephrectomy and was being advised to consider HD IL2 for my countless lung mets. I needed help. Within forty minutes, another patient offered his quick story with the disease, that he was working, in a clinical trial and doing better.  He gave me his number and said it was a good time to call.  I did call, and found a real person on the other end, who immediately let me know that I was not alone, that other options were emerging from the research, that my doctor was considered to be excellent and so on.  Not only this call, a clear signal that I was not alone, but he gave me his cell number, his work number and his pager.  “Call me anytime you need to talk.”  With that, my head cleared every so slightly, and I began my journey to this world, one which has lasted nearly ten years.  And it has led to you.

Through I have come to offer my own knowledge to others, and hope you will find this a valuable resource as well. You will be welcome, and given tools to make you more capable of dealing with kidney cancer.  Other cancers have similar groups, of course, as we all need to be SmartPatients.

Leave a Comment

Filed under Your Role

Into the Abyss: Becoming a Patient

My first foray into the world of “patient” began the day I was diagnosed with kidney cancer.  All my other visits with the doctor, my hospitalizations to have children, and even the odd time I received IVs of blood never had turned me into a patient.  To be deemed a patient was for other people, for those who were sick, or chronically ill.

That was never me until a wish for cosmetic eye surgery led me to get a blood test and the report of extremely low red blood cell count, a hemoglobin measure.   Mostly aggravated that low reading would hinder my plans to have new eyelids, I assumed my approaching menopause  had shifted things a bit for me.  Get “re-calibrated” with some blood, be a bit smarter about eating other than M&Ms for lunch, and all would be well.

Well didn’t happen that way.  Being told by my GP to go to the ER to be admitted to test for my low red blood cell count was more an annoyance, and bewildering.  The GP told me to be careful driving, as I could “bleed out”,  were I in an accident.  Had I taken him seriously, I might have been better off, but who wants to become a patient?

Three pints of blood, a colonoscopy, an endoscopy and a doctor assigned to me by the hospital later, I was sent home with a packet of iron pills, and reminder to eat very well, especially protein.  More liver pate and red meat, and fewer M&Ms, and an improved diet would fix it all, I was told.

Months and more tests later, looking less and less healthy, losing weight, being polite to the doctor, being on time and starting to fade away, I did not know that I was dying.  As I could later determine from the doctor’s notes, he thought I was an alcoholic in need of a liver biopsy to “confirm the cirrhosis”.  That biopsy required an ultrasound, and the race was on.

The ultrasound tech was chatty and friendly, until a sweep of her wand across my lower right belly. She turned herself and her screen away from me and stopped talking.  Knowing the liver was on the left, and her wand was on the right, I had a pretty good idea that the kidney was the new problem area.  Of course, my questions went unanswered, but was told that I would have a CT scan later than day.  But still no answers.

Still in the flimsy hospital gown, I discussed with my husband what was likely my new kidney cancer diagnosis, and figured I would just get a neat little incision, where they could take out the neat little tumor and I would get on with my neat little life.  Off to the CT scan, with more techs discussing me, carefully out of earshot, ignoring my pleas to explain what had been found.  “You doctor will talk to you” was the non-response.

But he was pretty non-responsive as well, waiting until late in the evening before telling me what I already knew, that I had a mass on my kidney.  Masses don’t belong there, so it must be cancer, but he was unwilling to affirm that.  He would find me a urologist the following day, he promised.

That recommendation given without further info, and in light of the frantic internet search, I was not enthusiastic about his recommendations, and especially when the urologist failed to mention any expertise with kidney cancer on his website.  Ain’t a good sign, says I, so plan B was to get to the Mayo Clinic.

I had grown up in western North Dakota and had learned that fancy health problems spurred a trip to Rochester, Minnesota.  Within a few days, I was in the Mayo Clinic, going through a series of new tests and imaging with the urologist appointment at the end of the day.  Try to coordinate that in less than 24 hours, and you will appreciate the miracle of Mayo.

At that appointment, my neat little tumor was now described as a malignant mass, about the size of a softball.  It had pushed the kidney up toward the liver, and thus caught the attention of the US technician.  Bad enough, I thought, but the subsequent CT had also shown my lower lungs to be full of tiny mets.  Mayo’s more thorough CT showed my entire lungs to be filled with tiny white metastases.  Not only did I have a huge tumor, my lungs were essentially a tumor colony.

Stunned, and nearly deafened by this news, I struggled to hear the doctor say, “I have a plan for you.”  With that hope and that plan, I began to breathe again.  And have been doing so for the last 10 1/2 years.

Thanks to so many people at Mayo, including Dr. Brad Leibowich, his staff, the angel nurses, and the Mayo brothers who created this wonderful place.

Leave a Comment

Filed under About Peggy, Newly Diagnosed, Patient Resources, Your Role

Molecular Pathways–A Mess or a Network?

Trying to explain in a patient- and Peggybrain-friendly way how molecular pathways which go awry and lead to cancer, I kept reading about enzymes and antagonists.  With these various genes with their cloning, overexpressions, mutations, and amplifications, and their antagonizing one another into action or inaction,  now I antagonized!   Go slow on this, marvel at the body’s complexity and remember there is no magic bullet to end cancer.  Sorry to all, especially to the newly diagnosed, but this is true.

Molecular Pathways—Or a Network?

The complexity of the dynamic molecular pathways that are essential to our very beings cannot be understated. Researchers are beginning to understand these signaling systems.and no wonder. In a dynamic dance, push cells to divide, to move and to die off, all  to support the human organism. When those actions become aberrant,  tiny changes can be life-threatening.

“Pathway” is used to explain these interactions in the molecular processing, but it evokes a linear image, direct and orderly. Each chemical reaction may seem to be a stepping stone on that path of cell growth. Missing a step or shifting into another pathway may impact the information sent to the nucleus of the cell.  Missteps in this process can lead to unwanted growth, or the path being interrupted completely. But  a molecular pathway is anything but simple and predictable.

Pathways may better be described as a string of knots to be loosened or tightened—or both. Each knot is a point where molecular changes may be triggered by chance interactions from outside that string. Those many pathways with their overlapping functions are wadded together, in an intricate spider web.  These tangled paths add efficiency as they can create “work-arounds” as needed, supporting the required needs of the system. All such pathways lead, directly or indirectly to the nucleus of cells, and to some function of the cell or larger system.

As those actions cascade down that string, from one knot to the next, they are influenced by other actions and reactions, and can trigger other pathway cascades. The aberrant or misdirected impulses can trigger unintended growth signals, or fail to stop the appropriate death of unnecessary cells (apoptosis=cell death). If something goes wrong, the exquisite and swift balancing act can shift to support a cancer cell. Once that cell has been created, it may evade the inhibiting signals,  subvert other processes, create its own support structure and to move to other parts of the body.  This may lead to metastases or spread of a cancer to a new site.

One large and complex pathway which can give rise to sporadic tumors and to genetic syndromes is that of the PI3K (phosphoinositide 3-kinase) pathway. Most often it is referred to as the PI3K/AKT/mTOR pathway, a reminder of its wide  span of action. It is an especially involved pathway, as per the long name! Studied since the 1980s, the PI3K pathway plays a key role in essential cellular functions. It is fundamentally involved in development of the embryo, and is one of the most commonly activated signaling pathways in cancer.

Mutations can be found in the inherited gene (germline mutations) or sporadically (somatically) as a part of normal growth, aging or environmental causes.  Germline mutations make some people more likely to develop a certain cancer, while other people get a similar cancer by sheer chance.  By studying germline mutations, researchers gain insight into the sporadic mutation versions of many cancers.  Since the PI3K pathway is so fundamental in growth, there is great need to target of this pathway to find relief from the cancer-inducing signals.

Relationship to Receptor Tyrosine Kinases

The PI3K pathway is linked to the large class of Receptor Tyrosine Kinases, (RTKs), and its activation can lead to a wide variety of cancers. The type of those alterations–whether mutations (changes) or amplifications (duplications)—gives rise to different cancers. For example, a mutation of PIK3CA on this pathway is found in 27% of breast cancers, and 17% of urinary tract cancers. Amplifications of that same gene is found in different rates in several lung cancers. Related PIK3CA is found in 53% of squamous cell cancer and just 12% of adenocarcinomas, while the mutation of PIK3CB is expressed in 80% of bladder cancers, and only 5% of breast cancers.

 Activation of Pathway

 As PI3K becomes activated, whether from PTEN or other growth factors, it subsequently will activate AKT (Protein Kinase B) and then mTOR (mammalian Target of Rapamycin. All play a role in cell proliferation and apoptosis (natural cell death), so any over activation can lead to excessive growth or loss of  natural inhibitors. Once cells no longer function under the normal restrictions, they recruit additional growth factors, override immune responses, and proliferate.

 Tumor Suppressor PTEN and PI3K

A tumor suppressor PTEN (phosphastase and tensin homolog) can be found on this pathway. This protein is encoded by a gene which is frequently mutated in many cancers. Loss of  this tumor suppression activity happens in about 70% of prostate cancers. Coupled with the other alterations in PI3K and its downstream AKT (protein kinase B), the loss of this suppressor can lead to the development, not only of many cancers, but other disorders. Germline (or inherited) mutations in PTEN play a role in, some non-malignant tumors and related syndromes, and possibly some autism spectrum disorders.

Should the PTEN gene mutate and its tumor suppression be limited, changes are triggered along the PI3K pathway. Those mutations can occur in many of the steps along the pathway to the nucleus of the cell. One misstep–an amplification or a mutation–can lead to more such missteps. With those variations, the resulting tumors will have varying incidence of that mutation. An amplification of one element will be found more frequently in certain lung cancers, and rarely in a prostate cancer. Bladder cancer may show overexpression of a related element in 89% of the time, while never exhibit another type of mutation.

All of the elements in this PI3K pathway can contribute to cell proliferation, to cell survival and motility (ability to move) and to angiogenesis (blood vessel development). Agents to target this missteps along the path have been developed, Some act to inhibit in the PI3K subpath, others in the AKT subpath, and several in the mTOR(mammalian target of Rapamycin). These agents are prescribed for cancers as  varied as the steps along the pathway.

 Therapeutic Agents in Use and Development

 The mTOR family of inhibitors includes Temsirolimus (Torisel) and Everolimus (Afinitor), approved for some renal cell, breast and pancreatic cancers. Many others are in development and in trials for a mix of blood and soft tissue tumors.

Upstream from mTOR is the PI3K pathway, so both can be targeted. Currently under study is an inhibitor of the AKT pathway, Perifosine, for the treatment of colorectal cancer and multiple myeloma, in combination with other drugs. Similar drugs are under investigation as they may overcome resistance developed to other drugs.

 Genetic Analysis and Treatment Approaches

Multiple genetic alterations these pathways can be found in the tumors or blood of cancer patients. Those alterations may trigger more changes in the primary tumor as it grows. That first kidney tumor can continue to change, following the initial mutation in the first few cancer cells. Billions of cells mutate, evade the immune system response, and respond to the new molecular actions. Thus,  new and different cell types may be created. A primary may exhibit certain characteristics, and its metastatic tumors may be quite different. Some tumors may respond to a treatment and nearby tumors will not, as each may have developed in response to different molecular interactions in the same pathway.

It is vital to have a thorough analysis of the tumor’s  from several places in the tumor, as well as from any metastases. Only with this can therapeutic agents be chosen to counter the cancer/those cancers. Pathologists may find several different types of cells in one tumor, and in the same tumor find still other unique cells from another tumor sample. The impact of molecular analysis will certainly change treatment, but it must begin with a very sophisticated and thorough gathering of the cellular material deemed to be cancer.



Leave a Comment

Filed under Uncategorized

Genetics of Renal Cell Carcinoma: Paving the Way for the Next Generation of Therapies

Why don’t the various medications work better for RCC?  Why do some patients do well, and others so poorly?  Why is it so hard to choose the right medicine?

This lecture explains why patients  and doctors must play the guessing game in treatment. It may be the most important lecture in this blog, and provides an explanation as to why RCC cancers behave so differently, even those variants  with similar pathologies. (My notes are in italics, like this, added to help with this complex discussion…I hope.)

Presented by Dr. James Brugolas, MD, PhD.: Kidney Cancer Program Leader Associate Professor of Internal Medicine & Developmental Biology; University of Texas Southwestern Medical Center

“I am going to talk to you today about the genetics of kidney cancer and how I believe it is paving the way for the next generation therapies. There are no significant disclosures.Brug 1 What is the ProblemWhat is the problem? This is a problem that we are well aware of some nowadays. We’re using one drug for all patients with kidney cancer.   You may imagine that these are all patients with metastatic renal cell carcinoma. But it is a heterogeneous population. Some have the red tumor, some of them the green tumor, and the drug may work with a subset of patients, but it may not work for another subset of patients.(Left half of the slide with the meds not reaching the patients with GREEN tumors.)

We should be evolving to a paradigm where patients with different tumors are treated with different drugs. (Right half of slide shows Drugs A and B going to different subsets of patients.)BRUG 2 Kidney Cancer subtypesIn the context of renal neoplasms , as you are well aware, we have kidney cancer with clear-cell carcinoma which accounts for the vast majority (75%) of that, and that’s going to be the focus of the first part of the talk.

BRUG 2 EDITSCaptureThe work from the Sanger Institute by Andy Futeral and Michael Stratton led to the identification of mutations in the PolyBromo1 gene. Polybromo1, like VHL, the most commonly mutated gene in clear cell renal cell carcinoma, is a two-hit tumor suppressor gene. That means both copies are mutated in tumors. They identified through truncating mutations in approximately 41% of clear-cell RCC. PolyBromo1 encodes BAF 180, which is a component of a nucleosome modeling complex which may regulate, among other processes, transcription.” (Peg & Wikipedia say that transcription is the first step of gene expression, where DNA is copied into RNA, giving instructions. Pretty basic cell info.)

BRUG 3BAP1 loss defiens new class of RCCCapture

“Work from my laboratory led to the discovery of another gene mutated in RCC, the BAP1 (BRACA1 associated protein-1) gene. Like the BPRM1 and VHL, BAP1 is a two-hit tumor suppressor gene, but it is mutated in only about 15% of sporadic clear-cell RCCs.

This work was done focusing on tumors that were of high grade. Indeed, we found there was a correlation between BAP1 loss and high grade, and also activation of the mTOR1 pathway. BAP1 encodes a nuclear deubiquitinase. Of greatest interest, mutations in BAP1 and BPMR1, we found, are largely mutually exclusive. This is shown this more detailed the next slide.

BRUG 4Mutation in BAP1 ^ PBMR1 mut excluWhat you are seeing here are 176 tumors, each in a row. These are tumors that have a deletion in PBMR1, these are tumors with the insertion, this with a point mutation (referencing the various symbols P). All the tumors in blue are tumors that have a mutation. As you can see most of the tumors, we see with PBRM1 mutations do not have mutations in BAP1. (Column 4 has many BAP1 mutations.)

(in last column) Here you have some tumors with mutations in BAP1, and we only identified three tumors that had mutations in both genes. (Very end of column 4) The probability of having mutations in both genes was statistically significant. Based on the individual mutation probability, we would have expected 13 tumors to have both genes. Only three were found, suggesting that BAP1 and BPRM1 mutations are largely mutually exclusive.

BRUG 5BAP1 & PBRM1 meta analWe went on to performing a meta-analysis. This is looking at data from that Beijing Genome Institute, at Memorial Sloan-Kettering and this from the TCGA (The Cancer Genome Atlas). As you can see, even though the numbers are small, the numbers of tumors with mutations in both BAP1 and PBRM1 was reduced, compared to the expected number of tumors based on the individual mutation frequency, and the p value was statistically significant.BRUG 6BAP1 & PBRM1 gene signatureI’m going to go through these and not spend much time, but suffice it to say that that we found that these tumors that have had mutations in BAP1 have a characteristic gene expression signature, and the tumors that have mutations in PBRM1 also have a characteristic gene expression signature. These gene expression signatures do not overlap. These are tumors that have different gene expression patterns and different biology.  (Per Peg: this shows that these are biologically different tumors. Notice the different patterns of red and blue below.)

BRUG 7 BAP1 & PBRM1 ex  diff SMALL

We think this establishes a foundation for the first molecular genetic classification clear-cell RCC. In our series, 55% have mutations in PBRM1, and 15% of the tumors have BAP1, and including 3% have mutations in both.  (The balance are wt, wild-type, meaning as it occurred in nature, not mutated.) BRUG 8Fdn Mole Gene sign ccRCC We also observed that there is a statistically significant correlation between mutations in BAP1 and high grade (tumors), and mutations in PBRM1 in low-grade (tumors).

So that let us to propose the following model. This is a model based on the fact that, very interestingly, VHL, BAP1, and PBRM1 are all located on chromosome 3. In fact, the short-arm of chromosome 3, and this is an area that is deleted in the majority of patients with von Hippel-Lindau-associated renal cell carcinoma, as well as in the majority of sporadic renal cell carcinoma, depicted here in blue.  (VHL associated RCC is an inherited type of RCC, not arising from a mutation…but along the same chromosome.)

BRUG 9  BAP1 & PBRM1 on chromo 3p VHLYou can imagine that with a single deletion, the kidney cell is losing, in fact, four copies or one copy of these four different tumor suppressor genes, the BAP1, PBRM1 and VHL.BRUG 10 VHL mutat high low grade diff

We have proposed the following model. We believe that renal cell carcinoma, and this is consistent with data from Gerlinger and colleagues, that it begins with an intergenic mutation in the VHL gene. And this is followed by loss of 3p, with a concomitant loss of one copy of all of these tumor suppressor genes. We then think that a mutation in PBRM1 leads to the loss of PBRM1 function, which is a two-hit tumor suppressor gene and low-grade tumors, whereas the mutation in BAP1 is associated with the development of high grade tumors.

REFER to ABOVE PIE CHART re High and Low Grades

This model also predicts that patients with BAP1 and PBRM1 deficient tumors may have different outcomes. So we simply took those patients whose tumors we had analyzed and asked what happens to their outcomes. (The UTSW and TCGA cohorts reference tumors from different institutions. Blue lines are the PBRM1 deficient tumors, and red lines the BAP1 tumors. The lines which fall the quickest show poorer overall survival.)BRUG 12 BAP1 & PBRM1 diff outcomesAs you can see here (LEFT), we found that patients with PBRM1 deficient tumors had a significant better Overall Survival than those who had BAP1 in their tumors, which had a Hazard Ratio for that of 2.7.

We did a similar analysis with the TCGA cohort, and we found (RIGHT) essentially the same result in the same hazard ratio of 2.8, indicating that BAP1 mutant tumors are associated with worse outcomes in patients. This data has now been reproduced by Hakimi and James Ying at Memorial Sloan Kettering, as well as the TCGA with their own analysis and our colleagues in Japan and Tim Eisen.

BRUG 12 Limit of SequencingThere are some limitations of sequencing. We all like next generation sequencing, but it has some limitations. First, it focuses on DNA. Secondly, it uses pooled material. Thirdly, it has reduced sensitivity which is a consequence of contamination by normal cells. In addition, a negative result does not guarantee that there is normal function. There is poor discrimination of subclonal mutations in different cell populations. So as a consequence of using poor material, we cannot tell whether these mutations are found in the same cells or different cells. Typically, it involves fresh frozen samples which are reduced in numbers, and consequently has limited power for doing some analysis.

Interestingly enough, immunohistochemistry (IHC), which we’ve use for a long time is a lot more precise. This is because actually you get information at the cellular level, and you get information about the protein. I mentioned to you that BAP1 is a two-hit tumor suppressor gene, which basically means when it gets mutated, you lose both copies.BRUG 14 dev of BAP1 IHC testAs you can see here–this is the same series showed before. These are here in blue the tumors that had mutations, in the second column, you can see blue and brown, the results by immunohistochemistry. That is done by IHC. And BAP1 is a nuclear protein, as you can see in these beautiful nuclear staining.

The bottom line is the majority of tumors that had mutations (referencing blue column data points) had lost BAP1. There were two tumors with point mutations where we were able to detect the protein. But there were three additional tumors we could not detect protein, but where there was no protein. If there is no protein, there cannot be functioning.

The rest of the tumors, with one exception, were all positive. So compared to mutation analysis, in fact, there is positive predictive value is better and the negative predictive value is pretty similar.

BRUG 15BAP1 loss assc w red CSS ccRCC

We have used this immunohistochemisty test in conjunction with the Mayo Clinic, looking at their registry with over 1300 with localized ccRCC. As you can see, looking here with people with specific RCC survival, patients with RCC tumors that have BAP1 positive tumors have significantly better survival outcomes than those who have BAP1 negative tumors, again with a Hazard Ratio of approximately 3.

BRUG 16Evalu of PBRM1 by IHC cohortNow in the same cohort we looked at BPRM1, which like BAP1 in a two-hit tumor suppressor gene, and we find no significant differences.Brug 14Now in the same cohort we looked at BPRM1, which like BAP1 in a two-hit tumor suppressor gene, and we find no significant differences.

Importantly, this test allows us to identify tumors that are simultaneously mutated for BAP1 and PBRM1. This is important.BRUG 17a IHC ids tumors UpperSlide A                                                                                                 Slide B  

(This slide in presented in two parts to help understand lecture.)
Upper half of slide showing stained pathology images.)

I am going to show you look at this tumor over here (upper left path image A) you can see that the tumor cells, there are some that have brown nuclei, but these are the endothelial and the stromal cells (along the edge of the white). The tumor cells are negative for BAP1.

This is the immunohistochemistry (upper right path  image B) for PBRM1, where we find the same thing,where the tumor cells are negative for PBRM1.

BRUG 17b IHC PathSLIDESlide C                                                                                                                  Slide D

Now (left path image C) compare these tumors with these images below. You can see here that the tumor cells positive for BAP1 in this area (the upper right corner of the path image C) and they are negative (in the lower left corner of Slide C), where you can see specific nuclei which look blue over there.

Now if you look at the parallel section (Lower right path slide D) you can see the area that was BAP1 positive (left hand side???D) is actually also PBRM1 negative, and the area which was BAP1 negative is actually PBRM1 positive.

So what you have over here (in the upper slides A & B) is a tumor which has lost BAP1 and PBRM1 in the same tumor region, the same cells. The tumor has lost BAP1 and PBRM1 in independent regions. Obviously these tumors will be acting differently and the tumor we are most interested in is this tumor type (in the upper left image A).

BRUG 18 IHC BAP1 & PBRM1 ids 4 sutypes ccRCCSlide should include quote “BAP1 and PBRM1 do NOT predict outcomes independently of SSIGN”

You have seen in our immunohistochemistry test. We believe we can separate clear cell renal cell carcinoma into four different molecular subtypes. This is looking at Mayo registries, where the patients with best outcomes are those whose tumors are well-typed for PBRM1 and BAP1. Then you have 2) patients that have tumors which are deficient for PBRM1, 3) patients that have tumors that are deficient for BAP1, and 4) patients whose tumors are deficient for both. As you can see the Hazard Ratio is 1.3, 3.2 and 5.2, respectively.

As I mentioned to you at the outset, that these tumors were underrepresented and indeed in this very large cohort, we found a very large significant underrepresentation with 1.8% of the tumors being double mutant, compared to 5.3% (which would been expected) with a very highly significant p value, again indicating there is mutual exclusivity–for reasons we do not yet understand.

Importantly BAP1 and PBMR 1do not predict outcomes independently of SSIGN. SSIGN is the nomogram created by the Mayo Clinic, which is based on Stage, SIze, Grade, and Necrosis. This is the SSIGN nomogram; this is the independent validation. You can see the curves separate beautifully, depending upon the score.

BRUG 19 Nomogr vs BiologyBRUG 20 Nomo vs Bio ANIMACapture

Now another question I submit to you. Should nomograms trump biology? In other words, if they live the same, “What do I care?” That has been the traditionally the thinking in the clinic. But look at these animals. A bullfrog and a grizzly bear also live about 30 years. However, they’re very different. The same is true for cottonmouth, a beaver or hummingbird or a newt. So even though they live the same, they are actually quite different!

We should be probing deeper and in fact, they should be dealt with differently!

BRUG 21ccRCC per genes

I believe that clear-cell renal cell carcinomas are in fact divided for at least four different subtypes. There are tumors that are wild type for both BAP1 and PBRM1, tumors that are PBRM1 deficient, tumors that are BAP1 deficient, and tumors that are deficient for both. In the future we are going to see different treatments for different tumor types.

BRUG 22 Conclusions

In conclusion, the discovery of BAP1 and PBRM1 mutations in clear cell renal cell carcinoma, how they relate to each other, and how they affect outcomes establishes the foundation for the first molecular and functional classification of sporadic ccRCC.

These two genes define for distinct subtypes, which I just went over and you have the Hazard Ratios and p-values written down there. These two tumors are not only associated with different outcomes, but they are also associated with different activations on the mTOR1 pathway and gene expression. Finally we identify mutations in BAP1 which define a novel clear-cell renal cell carcinoma syndrome. I have forty seconds left!BRUG 23 nnRCC graphic

I will go through these very quickly. Suffice it to say, we have also done molecular genetic analysis in non-clear-cell renal cell carcinoma, papillary, chromophobe, oncocytomas, This is now in press in Nature Genetics.

We found that papillary clear-cell carcinoma have more mutations than clear cell carcinoma, whereas chromophobe and oncocytomas have significantly lower mutation burdens, which is depicted there.

BRUG 24 Intr gen analy subtype RCC

These are some genes we found overrepresented– five seconds! You can see the copy number alterations, gene expressions. Anyway, these papers will be coming out next week.

BRUG 25 Associates

Finally, to acknowledge people who did the work in my laboratory, Pena-Llopis. We have had a close collaboration with the people at Mayo Clinic, and also the group at Genentech. We also work very closely with our surgeon and Payal Kapur, our pathologist.

Leave a Comment

Filed under Basics, Genomics & Genes

HD IL2: Cures, Partial Response or Stable Disease=Clinical Benefits to Patients

Is it a cure or nothing for cancer patients? 

Is there another way to measure the benefit from any medication?

We all want the cure, the Complete Response (CR) that can lasts many months or years.  Often we have to settle for some reduction in our tumors or mets, a Partial Response (PR). But even “Stable Disease” is welcome news.  To get that cancer back in its cage, even for a time, is  better than “Progressive Disease”.  When the cancer is progressing, your life may be regressing, and that isn’t what you want to hear.  That Progression Free Survival (PFS) has to start with stopping the cancer.

As complete and durable (ten years) responder to high dose interleukin 2 (HD IL-2), I welcome any discussions of “Clinical Benefit (CB)”.  CB includes all the good responses with any cancer treatment, CRs, PRs, and SDs.  We and our doctors need this information to make informed decisions about treatment, for IL2 or other meds. The value of Stable Disease has been ignored in many studies.  Maybe there are lessons here for you and your doctors, especially about the under-utilized HD IL2.

Clinical benefit (CB) of high-dose interleukin-2 (HD IL-2) in clear cell (cc) metastatic renal cell carcinoma (mRCC).

Source URL:

(Abstract is below)

There are few new studies about the use of HD IL2 following the approval of the targeted therapies. The ease of use of these agents, along with the desire not to send patients to specialty centers for IL2, limited its use. It was difficult to select patients, and the CR and PRs were relatively small in number. Doctors often did not discuss the possibility of a cure with their patients.  Did patients also miss the chance for Stable Disease, and with it, a  “Clinical Benefit”?

Patients in this study who did not have a CR, but whose cancer stopped growing benefited.  That CB was not counted in terms of the approval of the drug, nor do doctors consider it in their recommendations. Should this possibility be discussed with patients?  Most patients would surely answer, “Yes!” to that question.

The researchers recognize of the value of Stable Disease (SD) as an outcome, versus only Complete Response (CR) or Partial Response (PR). The usual outcome measures, Progressive Free Survival (PFS), or Overall Survival (OS), are noted, as isTime to Next Treatment (TNT). TNT implicitly recognizes that a failed or limited response will likely be followed by another treatment.  Early on, there were no subsequent treatments, sad to say.

The original clinical trial which led to FDA approval of HD IL2 recognized only CR, which was 5%, with the median not reached during the trial, and PR, which was 14%. Study footnotes indicate that three of the PRs had surgery which rendered them disease free at the time of the publication. This would now be called a “salvage therapy”, and put them in the No Evidence of Disease (NED) class. A different analysis of this data would have upped the CRs some small percentage, and some SD would also have been found.

Also the definition of PR was 50% or greater reduction in measurable tumor size, the sum of the perpendicular diameters of all lesions, with no new increase of size of any other mets. Far less strict measurements of PR were used in the targeted therapy trials, with a 30% tumor reduction defined as a Partial Response.

 With those definitions in mind, note that there are CRs in 11% of patients, with a PR in an additional 6% of patients. Most important is the SD category, which was achieved for 31% of all patients.   This total of 47% is described for the group as being of Clinical Benefit (CB). Certainly patients value the responses of SD, which seems to have provided slightly over one year versus 3-4 months benefit to those who did not have SD.

 When comparing the value of Objective Response (OR) with its median of 1616 days to that of Stable Disease (SD) measured as 1476 days, one can clearly see the value of achieving Stable Disease. Unfortunately, those patients with Progressive Disease, or with responses Not Evaluable (NE), showed OS of 365 days.

Patients should be aware of these definitions and the impact the lack of parallel comparisons in making these critical decisions.  Ten years ago, the patients reminded one another to stay alive until the next treatment.  Having Stable Disease made that possible.  Let’s apply the same tests to all the available treatments when making these life-changing choices of treatment.

ABSTRACT FOLLOWS Citation: J Clin Oncol 32, 2014 (suppl 4; abstr 461)

Author(s): Neeraj Agarwal, David D. Stenehjem et al University of Utah, Huntsman Cancer Institute, Salt Lake City, UT; Comprehensive Cancer Centers of Nevada, Las Vegas, NV; Pharmacotherapy Outcomes Research Center, College of Pharmacy, University of Utah, Salt Lake City, UT

Background: HD IL-2, an immunotherapy, is a standard of care for a select group of patients (pts) with mRCC. Generally objective response (OR) rates, i.e. complete response (CR) + partial response (PR), of 16-20% are discussed with pts, but not disease stabilization (SD). Recent data suggest that cancer immunotherapy may improve survival without inducing OR. Thus, treatment with HD IL-2 may provide survival benefit to an additional group of pts not experiencing OR, but only SD as the best response. Here we report CB (OR+SD), and specifically report outcomes of cc mRCC pts experiencing SD as the best response, on treatment with HD IL-2.

Methods: All sequential cc mRCC pts treated with HD IL-2 at the University of Utah Huntsman Cancer Institute from 2000-2012 were included. Pts were evaluated for best response, progression-free survival (PFS), time to next treatment (TNT) and overall survival (OS). Two practitioners independently reviewed HD IL-2 response with discrepancies adjudicated by a third reviewer.

Results: 85 pts, 79% male, were identified with a median age of 56 (range 32-76) years. Pts belonged to the following MSKCC risk categories: 11 (13%) good, 70 (82%) intermediate, and 4 (5%) poor risk. A CR was identified in 9 (11%), PR in 5 (6%), SD in 26 (31%), progressive disease (PD) in 38 (45%), and unknown/not evaluable (NE) in 7 (8%) pts; yielding a clinical benefit in 40 (47%) pts. The median PFS, TNT, and OS in these individual groups of pts are compared in the table.

Conclusions: A clinical benefit of HD IL-2 was achieved in nearly half of all clear cell mRCC patients. OS was not significantly different in OR and SD groups. Even though OR favorably determine outcomes, SD is also an important response criterion, and may be discussed during counseling patients for treatment with HD IL-2.

  PFS, days TNT, days OS, days
Overall 152 264 817
SD vs PD and NE 337 vs 78 (p<.0001) 373 vs 110 (p=.0001) 1,476 vs 365 (p=.0003)
CB vs PD and NE 791 vs 78 (p<.0001) 735 vs 110 (p<.0001) 1,616 vs 365 (p<.0001)
OR vs SD, PD and NE NA vs 99 (p=.0003) 953 vs 166 (p<.0001) 1,616 vs 603 (p=.0021)
OR vs SD NA vs 337 (p=.0234) 953 vs 373 (p=.0015) 1,616 vs 1,476 (p=.2094)
Abbreviation:PFS, Progression Free Survival; TNT, Time to Next Treatment, OS, Overall Survival; NA, not achieved;SD, Stable Disease; PD, Progressive Disease; NE, Not Evaluable; CB, Clinical Benefit;CR, Complete Response; PR, Partial Response;OR, Objective Response

Abbreviation: NA, not achieved.

Leave a Comment

Filed under Biological Systemic, Immune Therapies Old & New

My Radiologist or New Best Friend

In our kidney cancer world, it is unusual even to know the name of the radiologist, and most patients rely on his report, as given to the doctor. Many kidney cancers are “incidental findings” on CTs given with another diagnosis anticipated, broken rib, for example. Thus, it is the radiologist who recognizes the cancer long before either the doctor or patient. It may be a metastases that is found, with the primary tumor not yet imaged, or vice versa. If the tumor is relatively small, and no mets are seen in that initial scan, most patients are assumed to have localized disease. Often there are sudden plans for surgery, but not necessarily to search for other distant mets. The patient may be told, “I got it all.”

Of course, that is the best news, and the only news we want to hear.  But we are wrong, as what we NEED to know, even before the surgery, is whether or not there has been a spread of the cancer.  Treating kidney cancer is already a guessing game, and without knowing the whole game and all its rules, the patient is too often the loser. (Look for a longer, somewhat geeky post on small primary tumors and their potential to metastasize, both quickly and years later.  Ain’t a pretty picture.)

Any good radiologist will know that even small primary tumors can have already produced distant mets. That radiologist likely knows  that additional imaging should be done in such cases. The GP or even the urologist without RCC experience may NOT know that.

Too often small, overlooked mets in the lungs or on a bone can go unnoticed for months or years. Only the radiologist can provide a complete understanding of the extent of the cancer, and only with imaging outside the area of the “incidental finding”. He is the first line of defense, and often the first real expert in determining the extent of the disease. Thanks to those unsung heroes!


Leave a Comment

Filed under Ablation & Radiation, RCC Basics

Durable Response to a Med: Long-lasting or a Hard Time? More Translation Required!

When you are suddenly thrust into the medical world, unwillingly and without any kind of road map, you are surrounded by poorly marked turns, meaningless abbreviations and the sudden shift in the dialect.  The Wellness Center is usually about having lost one’s “wellness”, a word used only in the medical world, and not by real people.

Pressed to make decisions that may change your life, for the better or worse, you can be confused by those clever new words, some  from the marketing people (see above) and others from the clinical side. It is critical to understand how familiar words get reworked to explain new concepts.  Such explanations rarely reach patients, who are numbed and deafened after a shocking diagnosis.  And in the medical “new-speak”, those same patients may be told that this is the time in which they must take charge of their health, and make wise decisions quickly and correctly.  I find this a cynical and self-serving approach, as rarely is any real education offered in the language of the patient.

In kidney cancer, we have been blessed with new drugs these past eight years, but have no clear way to determine which of these agents might be of benefit to any of us.  On top of the shock of diagnosis, the patient is thrust into a guessing game.  Even the doctor is forced to play along, and often neither party knows the rules or the chances to win.  The doctor may recognize the vocabulary used in this new guessing game, but the patient does not.  Words which have meaning in day to day life don’t work the same.  Even some of the goals of the game are unclear to the patient. Wait! You probably think that being cured is the goal.  you

For example, we patients think that “progress” is good, but that is not true in cancer.  Progression is the goal of the cancer, so Progression Free Survival (PFS) measures the time between treatment and when the cancer is on the visible move again.  The word “visible” is important here, as that is a reminder that cancer does not just start at a size or style to match the sensitivity of imaging.  X Rays cannot see things as small as a CT scan can.  Bone scans see bone mets better than other scans and so on.

In reading clinical trials, you will encounter “durable” to explain how long a median PFS can be.  It may be described as remarkably durable, but in the pre-patient world, we would think that is pushing into years and years.  In reality is may be 15- 18 months.  We happily grasp at any more months than the non-treatment reality may be, but be aware of your and your doctor’s expectations in durability.

“Durable response” is surely what we want, but that is not translated to a cure, which might be the patient’s interpretation.  When you hear that, do ask for clarification, “How long does that response last?  What do you mean by ‘durable’?  What do we do after the duration of response comes to a stop?”

Having a firm grasp of this term and all others is an absolute necessity, and even if that is hard–in the real sense–it will be worth it to you.  You will have greater understanding of the treatments, the disease process, and a bit more sense of where you are.

More on these topics later, but do track the language, and remember than you still speak the old language.  At the very least, be ready to question anything that has that new dialect sound to it!

Leave a Comment

Filed under Immune Therapies Old & New

“We Are All Patients.” True or the Latest Cliche?

  1. The lovely cliche, “We are all patients” is just that. At every medical conference, or in the new lobby of the hospital, that phrase is offered.  While it is true in a statistical sense, it has a snarky sound to the new patient, reeling from his induction into the medical world, foreign and threatening.  It can really seem snarky to those who know how poorly patients can be treated, how overwhelming the language of illness is, and how chaotic a hospital setting is for most.

    The patient experience for someone who speaks the language, whose  friend is a specialist, or can understands the imaging reports and lab values, is in stark contrast for those lacking such resources.  Not much we-ness in those two patient groups!

    Certainly the medical people who suddenly become patients, or are thrust into being a caregiver, can offer their own colleagues insight into those new roles. But rarely is the newly diagnosed patient, one who has never “known” how the system works ready to take on this role. He is often the patient at the greatest risk–especially when told, “Be your own best advocate.”  Most of the time, that “Be your best” does not give the patient anything, but a reminder of how lost he is.

    The recent convert to patienthood who can navigate the system may be a wonderful translator of the dialect and the cultural mores of that system, but with limited impact.  If that medical pro turned patient is not also willing to change that culture, to be more open, to provide ready access to information, and to teach to the wider world, most patients will not be well-served by this new awareness.  As a society, we will continue to be inefficient in our care of the sick, have poorer individual and community health, and waste incredible sums of money.

    Patients could be given readable information about what the standard of treatment is for their disease. They can learn that the oncoloigst should recommend more frequent imaging, or that there are other treatments than the scalpel and chemotherapy. They can learn how to enhance their daily health, how to monitor side effects, to clarify their own health concerns.  Patients can be guided to credible online resources or patient groups so they can ask the new question, compare notes, learn the changing vocabulary.

    Doctors can tell patients that diagnosis is tricky and requires testing and feedback along the way. They can remind patients of the uncertainty and complexity of cancer, or a chronic disease. They can welcome questions about side effects, new studies, and treatment options.   The dynamic will shift as the patient becomes more knowledgeable, or has greater medical needs, and the doctor must shift as well.

    Patients and their providers need to partner with one another, with the patient at the center of all those relationships.  The patient needs ready access to his records, information relevant to his needs, and an atmosphere of collaboration, appropriate to the moment.  Anything less is damaging and wasteful, and we ain’t got time and money for business as usual.

Leave a Comment

Filed under Glossary, Your Role