Metastatic Kidney Cancer: Recent Advances and Future Opportunities

Michael B. Atkins, M.D.

Professor of Medicine
Beth Israel Deaconess Medical Center
Harvard Medical School
Director-DF/HCC Kidney Cancer Program

Treatments for RCC Therapy: Summary of Phase III Trial Results

Agent	PFS	os	Setting
IFN	3 mo	13 mo	First line, meta-analysis
HD IL-2	3 mo	17 mo	First line vs LD IL-2/IFN
Sunitinib	11 mo	26.4 mo	First line vs IFN-α
Pazopanib	11.1 mo	21.1 mo	First-line vs placebo
Bevacizumab (AVOREN/ CALGB 90206)	10.4 mo 8.4 mo	23.3 mo 18.3 mo	First line with IFN-α vs IFN-α
Temsirolimus	5.5 mo	10.9 mo	First line, poor-risk pts. vs IFN-α
Sorafenib	5.5 mo	17.8 mo	Second line vs placebo
Everolimus	4.9 mo	NA	Second line vs placebo

Motzer. N Engl J Med. 2007;356:115, Motzer. J Clin Oncol. 2009;22:3584; Hudes. N Engl J Med. 2007;356:2271; Escudier. ASCO. 2009 (abstr 5020), Rini. ASCO. 2009 (abstr LBA5019); Escudier. N Engl J Med. 2007;356:124; Escudier. J Clin Oncol. 2009;27:331; Kayl. ASCO. QL. 2009 (abstr 20); Sternberg. ASCO. 2009 (abstr 5020)

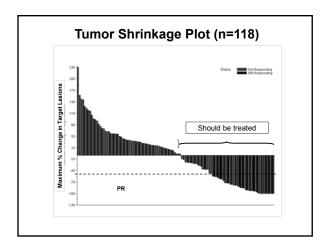
Targeted Agents: Common Adverse Events

Adverse Event	Bevacizu mab	Sunitinib	Sorafenib	Pazopanib	Temsirol imus	Everolim us
Fatigue	+	++	+	+	+	+
Rash	-	-	+	-	+	+
Hand-foot syndrome	-	+	++	+	-	-
Hypertension	+	+	+	+	-	-
Diarrhea	-	+	+	+	+	+
Stomatitis	-	+	-	-	+	+
Myelosuppression	-	+	-	-	+	+
Metabolic syndrome	-	-	-	-	+	+
Epistaxis/bleeding	+	-	1	-	-	1
Proteinuria	++	-	1	-	-	ı

New Standards for Clear Cell RCC Therapy

S	etting	Phase III	Alternative	
	0	Sunitinib	HD IL-2	
1st-Line	Good or intermediate risk*	Bevacizumab + IFNα		
Therapy	IISK	Pazopanib		
	Poor risk*	Temsirolimus	Sunitinib	
	Prior	Sorafenib	Sunitinib or	
	cytokine	Pazopanib	Bevacizumab	
2nd-Line Therapy	Prior VEGFR inhibitor	Everolimus	Clinical Trials	
	Prior mTOR inhibitor	Clinical	Trials	

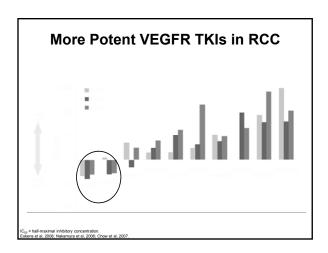
*MSKCC risk status.
Atkins. ASCO 2006 Plenary session; Figlin. Clin Adv Hematol Oncol. 2007;5:35; Escudier. Drugs. 2007;6:1457; Cho. Clin Cancer Res. 2007;13:761s. Atkins. Clin Cancer Res. 2007;13:761s.

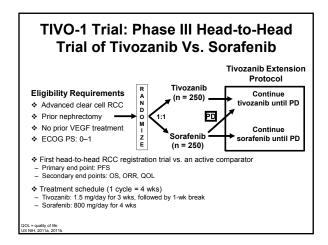

Targeted Therapy:Caveats/Perspective

- Activity is robust, but there are few, if any, complete responses
- Continued treatment appears required to maintain efficacy
- Disease resistance usually develops within 6-12 months for VEGF inhibitors; < 6 mos mTor inhibitors
- Survival benefit for VEGF pathway inhibitors has not been firmly established and for temsirolimus is established only in a subset of patients with the most aggressive tumors (benefit = 3.5 mos)
- Benefit for everolimus established only against placebo, not against an active treatment

RCC: Current Opportunities

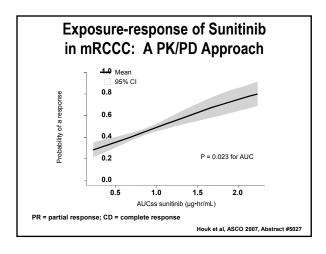
- Selection for immunotherapy
- New VEGF Pathway Agents
- Dose Intensification-based on biomarkers
- Sequencing of Agents
- Combination Therapy
- Novel Treatments/Immunotherapy

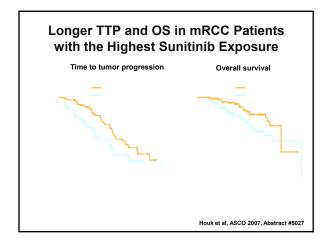

Activity of IL-2 is greater than package Insert Response* Historical rate IL-2 Select Trial (all pts n=120)* Likely explanations for improved RR include: 1) Enhanced "pre-screening" - smaller non-clear cell population 2) Impact of alternative therapies on IL-2 referral patterns 3) Application of debulking nephrectomy - fewer patients treated with primary in place "Using WHO Criteria McDermott et al ASCO 2010


Response by Baseline Characteristics RR (95% CI) P-value* All Patients (n=120) 28% (20%-37%) 0.0016 Tumor type Clear Cell (n=115) 30% (21%-39%) 0.31 Non-clear cell (n=5) 0% (0%-52%) MSKCC Risk Group Favorable (n=31) 32% (17%-51%) 0.08 24% (15%-35%) Intermediate (n=83) 67% (22%-96%) Poor (n=6) UCLA Risk Group Low (n=10) 30% (7%-65%) 0.22 Intermediate (n=101) 30% (21%-40%) High (n=8) 0% (0%-37%)

RCC IL-2 Select Trial: Biomarker Studies

- CA-9 expression did not predict for response
- Efforts to confirm other proposed biomarkers are ongoing
 - e.g. CA-9 SNPs, B7H1, B7H3, serum VEGF, gene expression patterns (immune infiltrate)
- Given the high RR and comprehensive tissue collection in this trial, an improved model for IL-2 patient selection will likely emerge
- Lessons from this work may guide the development of novel immunotherapies (e.g. CTLA-4, anti-PD-1) in mRCC




Treatment	Objective Response	% Pts with Tumor Burden Reduction	PFS
Sunitinib	30 - 45%	~ 70-75%	11 months (treatment-naïve) 8.4 months (cytokine-refractory)
Sorafenib	2% - 10%	~ 70-75%	5.5 - 5.7 months
Pazopanib	30%	~ 70-75%	9.2 months
Axitinib	47%	~ 70-75%	15.7 months (cytokine-refractory
Tivozanib	24%	83%	8.9 – 11.8 months 15 mos for ccRCC

VEGF Pathway Inhibitors: Commentary

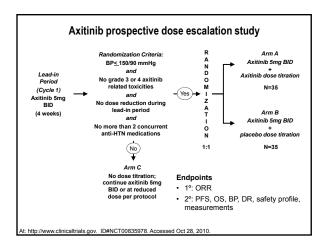
- Drugs identified as inhibitors of VEGF-R have a diverse spectrum of biochemical, clinical and toxic effects
 - Potency appears to correlate with inhibition of VEGFRs
 - Unique toxicities relate to non-VEGF pathway targets
- Although there is room for improvement on existing therapies, we may be rapidly approaching the limits of inhibition of the VEGF pathway

Exposure-Response-Sunitinib: Conclusions- Houk et al

- Maintaining sunitinib dosing may be important
- It may ultimately be important to dose patients based on blood levels similar to antibiotics or anti-convulsants

Hypertension May Predict Prolonged Survival With Sunitinib

 Retrospective analysis of patients treated with first- or secondline sunitinib


	Pts (N=544)	ORR	PFS	os
Systolic HT (≥ 140 mm Hg)	81%	54.7 %	12.5 mo	30.5 mo
No Systolic HT	19%	9.7%	2.5 mo	7.8 mo
Diastolic HT (≥ 90 mm Hg)	67%	57.2 %	13.4 mo	32.1 mo
No Diastolic HT	33%	25%	5.3 mo	15 mo

 ORR did not differ significantly between patients who were taking antihypertensive medication at baseline and those who were not

HT=hypertension.

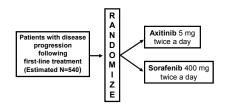
Rini. KCA. 2009.

Sequencing of Agents

IL-2 Therapy in Patients with Prior Antiangiogenic Therapy:Retrospective analysis

Patients who did not receive week 2 doses*	6/23 (26)
Prior sorafenib or sunitinib	6/15 (40)
Prior bevacizumab	0/8 (0)

Toxicities that prevented further treatment included:: cardiomyopathy, myocarditis, atrial fibrillation with hypotension and bowel ischemia, severe angina, sudden cardiac arrest, and bullous pemphigoid

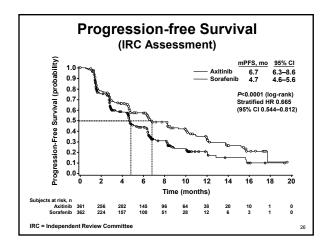

No tumor responses

Cho et al. J Immunotherapy 2009

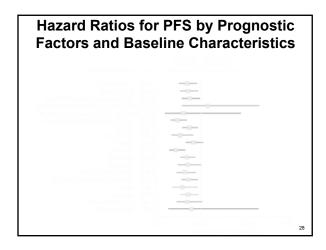
Results in <u>VEGF-targeted Therapy-refractory</u> RCC Patients

Agent	Population	Ν	OR/TS	PFS
Sunitinib (Rini et al. JCO, 2008)	Phase II: Bevrefractory	62	23% / 75%	7.1 months
Axitinib (Rini et al. JCO, in press)	Phase II: Sorafenib-refractory	62	23% / 55%	7.4 months
Sorafenib (Sheppard et al. ASCO 2008)	Phase II: Bevacizumab or sunitinib-refractory	49	3% / 38%	3.8 months
Everolimus (Motzer et al. Lancet, 2008)	Phase III: TKI-refractory (vs. placebo)	410	2% / 60%	4.9 months (vs. 1.9 months)
ABT-869 (Tannir et al. ASCO 2009)	Phase II: sunitinib-refractory	53	9% / 58%	5.4 months
Perifosine (Vogelzang et al. ASCO 2009)	Phase II: TKI-refractory (+/- mTOR-refractory)	50	11% (13% / 6%)	~ 3 - 4 months

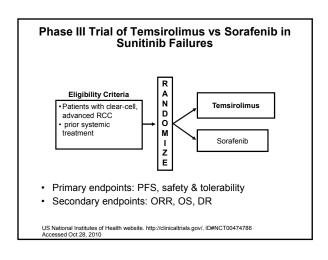
Phase III Trial: Axitinib vs Sorafenib in the Second-Line Treatment of Patients With mRCC



- · Primary endpoint: PFS
- Secondary endpoints: OS, ORR, safety and tolerability, and response duration


US National Institutes of Health Web site. http://clinicaltrials.gov/ct2/show/NCT00678392. Accessed 10/6/09.

8


Best Response by RECIST (IRC Assessment)				
Best Overall Response, %	Axitinib	Sorafenib		
Partial response*	19.4	9.4		
Stable disease	49.9	54.4		
Progressive disease	21.6	21.0		
Indeterminate	6.1	11.6		
Risk ratio (95% CI)	2.1 (1	.4–3.0)		

Prior Treatment	Axitinib	Sorafenib	ш	P
Regimen	(n=361)	(n=362)	HR	value*
Cytokines (n=251)	12.1	6.5	0.464	<0.0001
IRC Investigator	12.0	8.3	0.636	0.005
Sunitinib (n=389)				
IRC Investigator	4.8 6.5	3.4 4.5	0.741 0.636	0.011 0.0002

Adverse Events*					
	Axiti	nib (%)	Sorafe	enib (%)	
Event	All grade	Grade 3/4	All grade	Grade 3/4	
Diarrhea	55	11	53	7	
Hypertension	40	16	29	11	
Fatigue	39	11	32	5	
Nausea	32	3	22	1	
Vomiting	24	3	17	1	
Hypothyroidism	19	<1	8	0	
Stomatitis	15	1	12	<1	
Hand-foot syndrome	27	5	51	16	
Rash	13	<1	32	4	
Alopecia	4	0	32	0	

Sequential Therapy: Summary (1) Sequential therapy has become the *de facto* standard in RCC Preliminary data suggests that IL-2-based immunotherapy best offered first if at all Data suggests activity of VEGF/mTor inhibitor therapy are similar after immunotherapy as in Rx naïve patients Axis trial confirms that sequential VEGF pathway inhibition is safe and has antitumor activity - Axitinib is superior to sorafenib following either sunitinib or cytokines Odata support the hypothesis that more potent biochemical targeting of the VEGF receptor is associated with superior clinical activity **Sequential Therapy: Summary (2)** Phase III data suggest that mTor inhibition is better than placebo in VEGFR TKI resistance Benefit relative to VEGF pathway blocker uncertain Role of maintaining VEGF pathway blockade yet to be explored Additional prospective studies and efforts to rationally select second line treatment based on understanding mechanisms of resistance are necessary **Combination Therapy: Issues** · Hitting more targets is not necessarily better - Lowering dose of an active agent in order to accommodate toxicity of less active agent might diminish effects - Inhibition of some pathways might produce countervailing

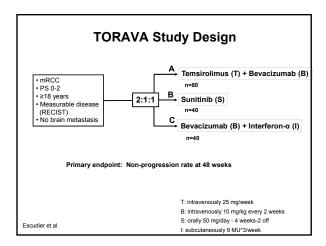
Relevant animal models Moved early into "benchmarked" studies

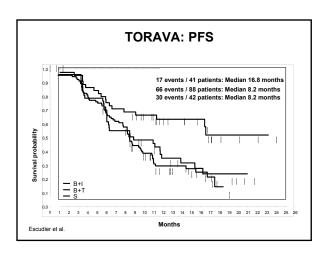
effects or just additional side effects

· Knowledge of pathways

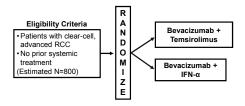
· Combination therapy should be based on

· Understanding mechanisms of resistance/escape


Combination Therapy Trials


Vertical Blockade

- · Sorafenib + bev- Sosman et al
 - 52% RR, DLTs required drastic dose reductions
- · Sunitinib + bev Feldman et al
 - > 50% RR at highest dose, MAHA syndrome with continued dosing


Horizontal Blockade

- · Bev + erlotinib-Bukowski et al
 - No advantage over bev alone
- · Temsirolimus + Bev- Merchan et al
 - Tolerable at full dose, > 50% RR, 12 pts
- · Everolimus + Bev- Whorf et al
 - Tolerable at full dose, active in first and second line

Combination Therapy in RCC: INTORACT Trial

- Primary endpoints: tumor measurements and survival status
- · Secondary endpoints: safety, PFS, ORR, and OS

US National Institutes of Health website. http://clinicaltrials.gov/ct2/show/NCT00631371. Accessed 10/6/09.

Targeted Therapy + Immunotherapy

- · Temsirolimus + IFN
 - Less active and more toxic than temsirolimus alone
- Bevacizumab + IFN
 - Two randomized phase 3 trials prove superior PFS with conflicting OS results
 - Additive but not synergistic toxicity
 - Confirmed in current trial by Escudier et al.
- · Sunitinib + IFN: excessive toxicity
- Bevacizumab + high-dose IL2

IL-2 + Bevacizumab - Best Response

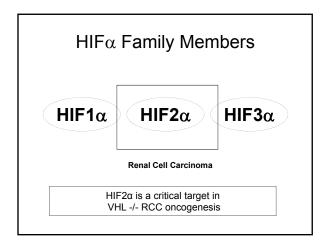
?IL-2 { ?Bev {

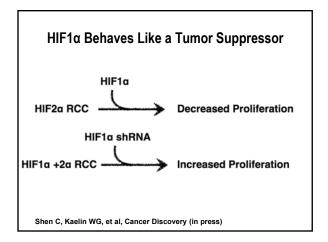
	Response	N (%)
r	Complete Response	4 (8)
L	Partial Response	10 (20)
	Stable Disease	21 (43)
	Progressive Disease	13 (27)
	Withdrawn	1 (2)

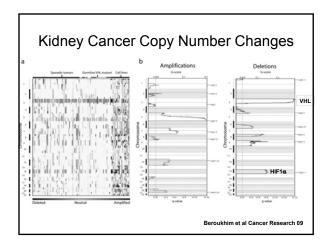
Dandamudi, CWG, ASCO 2010.

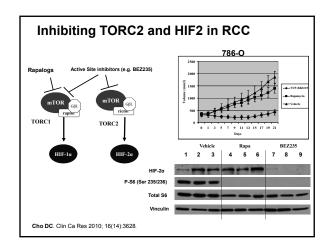
Combination Therapy: Comment

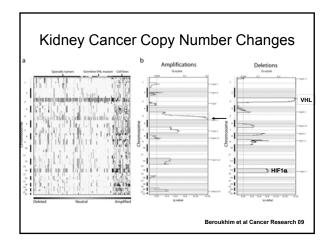
Combination therapy is more complicated than we had hoped

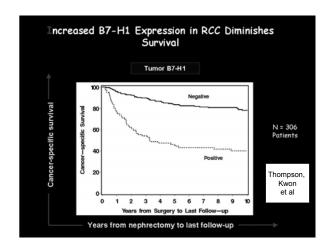

Vertical Blockade

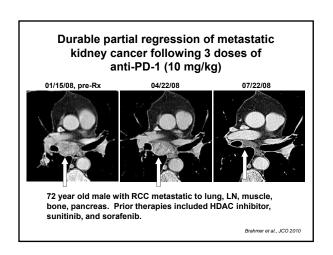

- More toxic, requires lower doses
- However, may just need to beat best single agent for that pathway
- · Horizontal Blockade
 - More tolerable
 - However, bar is higher. Likely needs to be significantly better than sequential therapy
- · Immunotherapy + Targeted Therapy
 - Additive benefit with bevacizumab
 - More toxicity with targeted therapies


Novel Targets

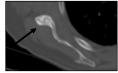

- · Hif 2 alpha
- PI3K/Torc 2
- PD1

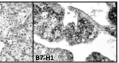





Dual TORC1/TORC2 Pathway Inhibition: Investigator-Initiated Clinical Trials

- •Phase II Biomarker Trial of BEZ235 in patients with RCC (Cho)
- •E2811: Cooperative Group Randomized phase II Trial of OSI-027 vs everolimus in patients with VEGFR TKI resistant RCC- (Cho)



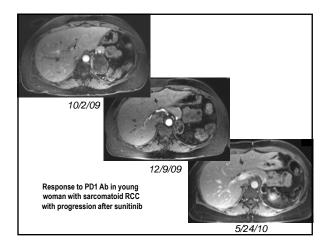

Enhancing Immune Responsiveness Total Persentagual Call Persentagual Call Persentagual Call Institute Coll Ins

Resolving RCC lytic bone metastasis in patient treated with anti-PD-1 (10 mg/kg)

Brahmer et al., JCO 2010

Updated Clinical Activity in RCC Patients

*


Response	RCC Patients (n = 16)	
PR, n (%)	5 (31.3)	
uPR, n (%)	1 (6.3)	
SD ≥6 months, n (%)	7 (43.8)	

"Patients treated with the 10 mg/kg dose
Abbreviations: PR = partial response; RCC = renal cell carcinoma; SD = stable disease; uPR = unconfirmed partial response

McDermott et al GU ASCO 2011

Percent Change in Tumor Burden in RCC Patients *Patients treated with the 10 mg/kg dose **Upper horizontal line denotes no change; lower horizontal line denotes 30% decrease (RECIST threshold for PR). Abbreviations: PR = partial response: RCC = renal cell carcinoma; RECIST = Response Evaluation Criteria in Solid Tumors 55.

PD-1 Ab Summary

- Acceptable tolerability at all dose levels tested
 MTD not reached at 10 mg/kg
- Adverse event profile consistent with an immunomodulatory mechanism of action
- Anti-tumor activity observed in patients with RCC, melanoma and NSCLC
 - -Responses appear durable
- · Phase 2 dose and schedule still under evaluation
- Opportunity for targeted immunotherapy with possible biomarker selection

Trials To Watch: 2011 and Beyond

Regimen	Group	Status
Pazopanib vs Sunitinib	GSK	Results soon
Tivozanib vs Sorafenib	Aveo	ASCO 2012
E2804 - 4 arm combination (BeST)	ECOG	ASCO 2012
Tor inhibitor + Bev first line trials (TORAVA, INTORACT)	France Industry	ASCO 2010, Near completion
RECORD-3: Sunitinib to everoliums vs everolimus to sunitinib	Pfizer	Accruing
RAD+/- Bev in VEGFR TKI failures	CALGB	Accruing
Tems vs Sorafenib in TKI failures	Wyeth	Nearing completion
Phase II Anti-PD1 Ab trial	BMS	Nearing activation

Future Challenges/Opportunities Biomarker studies Imaging Blood-based Early detection Mechanisms of resistance Adjuvant Therapy Role of cytoreductive Nx and neoadjuvant Rx Therapy for non-clear cell RCC