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SUMMARY

Clear cell renal cell carcinoma (ccRCC) is the most
common kidney cancer and has very few mutations
that are shared between different patients. To better
understand the intratumoral genetics underlying
mutations of ccRCC, we carried out single-cell
exome sequencing on a ccRCC tumor and its adja-
cent kidney tissue. Our data indicate that this tumor
was unlikely to have resulted from mutations in VHL
and PBRM1. Quantitative population genetic anal-
ysis indicates that the tumor did not contain any
significant clonal subpopulations and also showed
that mutations that had different allele frequencies
within the population also had different mutation
spectrums. Analyses of these data allowed us to
delineate a detailed intratumoral genetic landscape
at a single-cell level. Our pilot study demonstrates
that ccRCC may be more genetically complex than
previously thought and provides information that
can lead to new ways to investigate individual
tumors, with the aim of developing more effective
cellular targeted therapies.
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INTRODUCTION

Renal cell carcinoma accounts for about 209,000 new cancer

cases and 102,000 deaths worldwide per year (Rini et al.,

2009), of which�80%are clear cell renal cell carcinoma (ccRCC)

(Ng et al., 2008). Previous studies have shown that ccRCC is

a genetically distinct adult carcinoma with a relatively low muta-

tion rate (Greenman et al., 2007). Sequencing analysis of such

tumors has revealed that there are few common mutations

shared between different ccRCC patients, including VHL and

PBRM1 (Dalgliesh et al., 2010; Varela et al., 2011). However,

the intratumoral heterogeneity of ccRCC remains unknown,

and quantification of the heterogeneity remains a difficult task

especially in those tumors withoutmutations in VHL andPBRM1.

A major difficulty in determining causative mutations in many

cancers relates to the fact that mutational analyses are carried

out on DNA from tumor tissues obtained through surgery, and

such samples may thus include adjacent noncancerous cells as

well as a mixture of cancer cells that may be at different muta-

tional stages, given that there is an accumulation of mutations

during cancer progression. Thus, even with current sequencing

technology, exploring cancer biology using DNA from mixed

cancer tissueDNA (Baudot et al., 2009) canbe extremely difficult.

One way to circumvent the problem of mixed cell types in

a tumor sample would be to carry out sequencing on single cells
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Table 1. Exome Sequencing Coverage of Cancer and Normal Control Tissue

Sample ID

Human All Exons Coverage (%) VHL Exons Coverage (%) PBRM1 Exons Coverage (%)

R13 R103 R203 R13 R103 R203 R13 R103 R203

RC-T 98.94 96.79 95.01 100 89.80 80.88 100 100 100

RN-T 97.05 80.72 65.70 100 66.67 64.25 100 99.65 89.76

‘‘RC-T’’ and ‘‘RN-T’’ are cancer tissue and normal control tissue, respectively.
isolated from a tumor. Recently, Navin et al. developed amethod

called single-nucleus sequencing, whereby they isolated single-

cell nuclei from breast cancer tissue and performed low-

coverage sequencing to investigate DNA copy number variation

between the isolated cells (Navin et al., 2011). Their results indi-

cated that single-cell sequencing is a promising way to infer

specific intratumoral genetic changes; however, it was not

possible to use this method to assess specific single nucleotide

changes.

To quantitatively investigate the intratumoral heterogeneity of

ccRCC, we selected a 59-year-old Chinese male with ccRCC to

carry out exome sequencing of 25 single cells from the tumor

and adjacent noncancer tissue. Exome sequencing of the

tumor and the matched normal tissue showed that this tumor

was unlikely to be related to mutations in VHL and PBRM1, indi-

cating that recurrent mutations identified in a patient population

may not be relevant with regard to a single patient or tumor.

This emphasizes the importance of assessing and diagnosing

cancers and patients at an individual level to determine the

most efficacious treatment. Our single-cell exome sequencing

data allowed us to carry out a population genetic analysis on

the tumor. We did not observe any significant clonal subpopu-

lations within this tumor. We also found that most of the

somatic mutations occurred only in a small fraction of the cells

and that mutations with different allele frequencies showed very

different mutation spectrums. This may be the result of selec-

tion during tumor progression. We also compared the results

from the single-cell sequencing with a screen for mutations in

a cohort of 98 ccRCC patients (Guo et al., 2012), enabling the

identification of potential key genes, including AHNAK and

SRGAP3, in the establishment of this tumor. Our data provide

the first intratumoral genetic landscape at a single-cell level

and reveal genetic characteristics of this tumor that indicate

that ccRCC may be more genetically complex than previously

thought.

RESULTS

Exome Sequencing Indicated that Tumor Development
Was Unrelated to the Presence of VHL and PBRM1
Mutations
We obtained a sample of the tumor present in the left kidney,

classified as stage IV according to the 2002 AJCC TNM classifi-

cation of renal cell carcinoma (Figure S1 available online), and

a sample of adjacent kidney tissue. We first carried out whole-

exome sequencing of the cancer and normal adjacent kidney

tissue of this patient. More than 95% of the target regions in

cancer tissue sequencing were covered sufficiently for confident

variant calling (defined as R 203) (Table 1).
Given the commonly identified renal cancer mutations in VHL

and PBRM1, we first checked the sequence quality of the whole

exons of VHL and PBRM1. The capture data covered 100% of

the exons of these genes, with > 80% of the gene exon regions

covered in the cancer tissue sequencing, which provided suffi-

cient coverage for confident variant calling (defined as R 203)

(Table 1) and allowed us to confidently detect somatic mutations

in the coding regions of VHL and PBRM1. We found no mutation

in the coding region of VHL and three somatic mutations in

PBRM1 of extremely low frequency (average mutant allele

frequency of < 4%). We validated these findings using PCR

and Sanger sequencing (Table S1).

Both VHL and PBRM1 are located on chromosome 3p, which

has previously been reported to be a variation hot spot (Berou-

khim et al., 2009; Pei et al., 2010). Given this, we further excluded

the involvement of these two genes in the ccRCC of this patient

by looking for loss of heterozygosity (LOH) across the whole

exome.We found no signals of LOH on chromosome 3 or in other

reported LOH or deletion hot spots such as chromosomes 1, 6,

and 14 (Chen et al., 2009; Pei et al., 2010) (Figure S2).

We then examined the sequence reads from this patient that

contained regions with known variants observed in a ccRCC

cohort of 98 patients (Guo et al., 2012). Here, we found that

PBRM1, which has been reported to be recurrent in more than

20% of patients, was present at an extremely low mutant allele

frequency (based on the mutant read number ratio in tissue

sequencing) in this patient. Conversely, thereweremutant alleles

with a high frequency in several other genes (e.g., AHNAK and

SRGAP3) that have been shown to be infrequently mutated in

ccRCC at the population level (Guo et al., 2012) (Figure 1).

These analyses showed that the cancer in this patient was

unlikely to be related to the presence of VHL and PBRM1 muta-

tions. We therefore went on to perform further genetic analyses

on this VHL/PBRM1-negative ccRCC patient to investigate

the other genetic mechanisms that may underlie this type of

ccRCC.

Single-Cell Exome Sequencing and Population Somatic
Mutation Calling and Validation
To obtain the most detailed cellular genetic information on this

tumor, we carried out single-cell exome sequencing (Hou

et al., 2012, in this issue of Cell). In total, we sequenced 20

single-cell exomes from the tumor and 5 single-cell exomes

from the adjacent normal tissue. On average, more than 80%

of the target regions were covered sufficiently for confident pop-

ulation variant calling (defined as R 53) (Li et al., 2010; Yi et al.,

2010) (Table S2). We then performed single-cell analysis using

a modified bioinformatics pipeline, as shown in Figure S3 (Hou

et al., 2012).
Cell 148, 886–895, March 2, 2012 ª2012 Elsevier Inc. 887
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Figure 1. Somatic Mutant Allele Frequency

from the Individual Patient that Contained

Known Variants in the Large ccRCC Cohort

of 98 Patients in Guo et al. (2012)

Mutant sites selected in cancer tissue here are

covered by more than ten normal reads without

any mutations in the normal tissue. The vertical

axis showed the average somatic mutant allele

frequency in a gene. The horizontal axis showed

that mutant sites contained genes, which also

present in the 98 patient cohort ranked by

alphabet. The area of the circle represents the

observed mutation frequency in the 98 patient

cohort of each gene. AHNAK, SRGAP3, and

PBRM1 were highlighted in red. For further

description of the genetic analysis of cancer and

normal tissue sequencing data, see also Table 1,

Figure S1, and Figure S2.
After determining the false positive and false negative rates as

previously described (Hou et al., same issue) (Figures S4 and

S5), we identified 260 somaticmutation sites in the coding region

between the cancer and normal population (average �78.9

mutations per single cancer cell) and only 12 somatic mutations

within the normal control population (average �20.4 mutations

per single normal cell), indicating that our somatic mutation

calling in the cancer cells was not due to amplification errors

(kappa square test, p = 1.4 3 10�5). Of the 260 somatic mutant

alleles, 93.64% were covered by at least 10 reads, which indi-

cated that the called heterozygous somatic mutations are of

sufficient confidence (Hou et al., 2012). Comparison of the

somatic mutation frequency of the 260 somatic mutations from

the single-cell sequence data with that of the somatic mutation

frequency in our whole-cancer tissue sample showed a high

correlation (r2z0.8) (Figure S6). We further validated our somatic

mutation calling accuracy using PCR sequencing by randomly

selecting 35 somatic mutation sites from three different cells.

We were able to amplify a total of 85 sites, and of these, 82 of

the somatic mutations (96.47%) were confirmed by PCR-based

capillary sequencing (Tables S3A–S3C). This further indicates

the high accuracy of our mutation calling and that it was suitable

for use in further analyses.

Population Analysis Indicates that Three of the
Individual Tumor Cells Were Normal Cells
Because surgically removed tumors can contain both normal

and cancer cells, we next determined whether the single cells

that we isolated from the tumor sample were indeed tumor cells.

We performed principle component analysis (PCA) mutation

profiling on the 260 somatic mutation sites and found that cells

RC15, RC17, and RC20 clustered tightly with the adjacent non-

cancer tissue (Figure 2A), indicating that these are normal cells

rather than cancer cells and that these were not included in

further analyses of tumor heterogeneity.

The ccRCCTumor Has NoApparent Cell Subpopulations
Using the above PCA analysis to compare mutation patterns

between the individual cells, we observed that the normal cells

clustered tightly, whereas the cancer cells were more diverse

and showed no obvious cell subpopulations. To assess the time-
888 Cell 148, 886–895, March 2, 2012 ª2012 Elsevier Inc.
scale between the appearance of somatic mutations in the indi-

vidual cells relative to one other, we carried out a phylogenetic

analysis. We built a tree based on the modified neighbor joining

(NJ) method (Saitou and Nei, 1987) using the 260 identified

somatic mutation sites, with the normal cells serving as the

common node at the root of the tree. The cancer cells were

significantly separated from each other after emerging from their

common node. These data were consistent with those of the

PCA profiling, as it again indicates that there were no subpopu-

lations of cancer cells within the cancer tissue (Figure 2B). The

branch that separated the cancer cells and the normal cells

was very short in comparison to the branches separating the

cancer cells, suggesting that the time for generating genetic

changes that result in normal cells progressing to cancer cells

is very short. However, the diversity that we observe between

the individual cancer cells is large, which most likely reflects

the accumulation of passenger mutations that were closely

linked to changes specifically related to cancer progression.

The phylogenetic tree analysis also confirmed the PCA data

with RC15, RC17, and RC20 cells, which clustered tightly with

adjacent noncancerous tissue, indicating that they are more

likely to be normal cells rather than cancer cells; we therefore

removed these from the cancer cell data set prior to further anal-

yses. Removal of these cells resulted in a final number of 229

somatic mutation sites between the cancer cell population and

the normal controls (Table S4).

Quantification Analysis of Intratumoral Heterogeneity
To investigate the intratumoral mutation landscape, we first eval-

uated the intratumoral somatic mutation frequency. To reduce

the influence ofmissing data of individual single cells, we defined

somatic mutation frequency of the 229 sites using the mutant

reads ratio in cancer tissue sequencing data. The frequencies

showed two distinct peaks, with one in a frequency range of

0%–5% (low frequency), indicating that the cancer tissue

contained many rare mutations that were only present in a few

of the cancer cells. The other peak was at a frequency range

of 15%–20%, indicating that there were no dominant clones

in the cancer tissue and that there was significant intratumoral

heterogeneity of this cancer tissue (Figure 2C and Table S4).

According to this allele frequency spectrum, we defined a
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Figure 2. Somatic Mutation and Single-Cell Population Analysis in This ccRCC Patient

(A) Principle component analysis (PCA) of cancer cells (RC, red), normal control cells (RN, green), and normal cells picked as cancer cells (RCPM, yellow) based

on principle component analysis (PCA).

(B) Neighbor joining phylogenetic tree constructed using sites of somatic mutation data by Euclidean distance; cancer cells (RC, red), normal control cells

(RN, green), and normal cells picked as cancer cells (RCPM, yellow) are presented here. RN-T here represents the normal tissue DNA as control. After filtering the

three normal cells picked as cancer cells, we identified 229 somatic mutations (see Table S3 for details).

(C) Mutant allele frequency spectrum somatic mutations in 17 cancer cells. Based on Fisher’s exact test, we separated themutations into commonmutations and

rare mutations (see Table S3 for details).

For single-cell data evaluation and details of somatic mutation calling, see also Figures S3, S4, S5, and S6 and Tables S2, S3, S4.
commonly shared (tissue common) mutation site as one with

more than 20% mutant allele frequency in tumor tissue (p =

0.000009, kappa square test). The rest of mutation sites that

were not commonly shared (cell specific) were designated as

rare mutation sites. Strikingly, more than 70% of the mutations

were cell-specific sites, and less than 30% were tissue common

sites (Table S4). This result is consistent with general observa-

tions from sequencing of cancer tissues that one can identify

more mutations at greater sequencing depth. This therefore

indicated that, if sequencing is carried out at a depth lower

than 50-fold, detection of rare mutations would be difficult.
Mutations of Different Frequencies Have Different
Mutation Mechanisms
Our data also allowed us to investigate the specific types of

mutation mechanisms that occurred within the ccRCC tumor.

Analysis of all of our somatic mutations showed a preference

for C$G/T$A, which is similar to the previously reported muta-

tion mechanism pattern seen in ccRCC (Dalgliesh et al., 2010)

and other cancers (Greenman et al., 2007) (Figure 3A). Strikingly,

however, when we assessed rare mutations and the common

mutations separately, we found that the type of mutation mech-

anism was different. Here, we found that the patterns of the rare
Cell 148, 886–895, March 2, 2012 ª2012 Elsevier Inc. 889
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Figure 3. Somatic Mutation Pattern Spectrums

(A) Somatic mutation pattern spectrum of individual ccRCC cells.

(B) Somatic mutation pattern spectrum of rare mutations (blue) and common

mutations (yellow) compared with spectrum of driver mutations (red) and all

nonsynonymous mutations (green) in the 98 patient cohort.

See also Table S4.
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Figure 4. Intratumoral Gene Mutation Landscape of an Individual

ccRCC Patient

Nonsynonymous somatic mutations are plotted in two-dimensional space,

which represents chromosomal positions of mutant genes. Chromosomal

positions and mutant genes were ranked as indicated by arrows beside the

plane. Each mutant gene is scaled by a relative position (0–1) on its chromo-

some; thus, its position on different chromosomes was normalized by its total

length. Higher peaks (purple) —peak heights assigned a value of mutant reads

ratio—indicate the 28 identified mountain genes. The shorter peaks (green),

with peak heights assigned a value of mutant reads ratio, show the 66 iden-

tified hill genes. Genes recurrently mutated in the large patient cohort are

marked in red (mountain) and blue (hill). See also Table S5 for details.
mutation sites were primarily as those seen above, whereas the

common mutation sites showed an increasing percentage of

transversion mutations (Figure 3B). This confirms the mutation

spectrum seen in a renal cancer patient population exome anal-

ysis (Guo et al., 2012), in which we also found an increasing

percentage of transversion mutations (Figure 3B). We suggest

that the presence of such a mutation pattern could potentially

be used as a metric of ccRCC cancer progression.

Intratumoral Genetic Landscape at the Single-Cell Level
We identified 120 somatic mutations in the coding regions and

assessed their potential functional impact by looking at differ-

ences between nonsynonymous (NS) and synonymous (S)

mutations in all of the cells. The NS/S ratio was 4.0, which was

relatively higher than that reported in previous reports of ccRCC

and other tumor types (Ding et al., 2010; Lee et al., 2010; Ley

et al., 2008; Pleasance et al., 2010a, 2010b; Varela et al.,
890 Cell 148, 886–895, March 2, 2012 ª2012 Elsevier Inc.
2011). This may be due to single-cell sequencing having a higher

sensitivity for identifying somatic mutations.

Given that we carried out single-cell exome sequencing, we

were not only able to observe the genes with mutations, but

could also assess the frequency at which a mutant allele was

present among the different cells. This can provide greater infor-

mation on the relative impact of each change on tumorigenesis,

beyond that possible with whole-tumor genome sequencing.

To investigate the frequency of nonsynonymous somatic

mutations, we carried out an analysis that graphically shows

the intratumoral mutational landscape of the single ccRCC

patient, representing themutational heterogeneity within a single

cancer tissue. Our landscape display shows a small number of

mutant genes that are present in a large fraction of individual

cells (which we term ‘‘mountains’’) and a significantly greater

number of genes mutant in only one or a few cells (‘‘hills’’). We

defined a gene as a ‘‘mountain’’ if the gene contains at least

one nonsynonymous common mutation site and defined the

genes of the rest as ‘‘hill.’’ We detected 28 mountain genes

(Table S5, in purple or red) and 66 hill genes (Table S5, in blue

or green). Our analysis showed that the ‘‘mountains’’ and ‘‘hills’’

were evenly distributed in the patient genome and had no signif-

icant bias for any chromosome (Figure 4).



Table 2. Key Genes Identified in This Patient

Gene Name Mutations

Patient

Prevalence (%)a

P Valueb

(Passenger

Probability)

Mutant Allele

Frequency in

Cancer Tissue

Mutant Cell

Number Mountain/Hilla

AHNAK g.chr11:62042132G > A; p.P5445 > S 5% 9.29 3 10�9 20% 12 M

LRRK2 g.chr12:38985956A > G; p.I1294 > V 4% 4.28 3 10�4 8% 8 H

SRGAP3 g.chr3:9041948T > A; p.R535a 2% 2.92 3 10�1 34% 16 M

USP6 g.chr17:4976948C > G; p.T72 > R 2% 3.26 3 10�1 1.99% 3 H
aPatient prevalence means the mutant genes recurred in the 99 ccRCC patients (including this patient); M/H represents mountain or hill gene.
bSignificance of the observed mutation rate over the expected mutation rate in Guo et al. (2012).
Mutated Genes and Their Potential Roles
in This ccRCC Tumor
Five (two mountain and three hill genes [SRGAP3, NIPBL,

UBE4A, USP6, and SH3GL1]) of the 94 identified genes were

present in either the Cancer Gene Census (http://www.sanger.

ac.uk/genetics/CGP/Census/) data set or have been reported

as ccRCC mutations in previous work (Dalgliesh et al., 2010;

Varela et al., 2011). Additionally, amino acid analysis and SIFT

(Kumar et al., 2009) predictions indicate that four of these five

genes (SRGAP3, NIPBL, UBE4A, and SH3GL1) contain a trun-

cating or likely functionally damaging mutation.

Of note, four of the 94 identified genes (two mountain genes

[AHNAK and SRGAP3] and two hill genes [LRRK2 and USP6])

were also present in a cohort of 99 ccRCC patients (this included

the 98 ccRCC patients [Guo et al., 2012] and the individual

patient reported here; see Table 2 and Figure 5A for details).

Genes that are recurrently mutated (mutated in more than 2%

patients) in this cohort are particularly attractive as potential

driving factors for cancer initiation and development in this

patient.

One of the mountain genes of particular interest was AHNAK,

which recurred in 5 of 99 (�5%) of the ccRCC patients (Fig-

ure 5A).AHNAK is expressed as a 17.5 kilobasemRNA in several

cellular lineages but is typically repressed in cell lines that are

derived from human neuroblastomas and from several other

types of tumors (Shtivelman et al., 1992). The Ahnak protein acti-

vates protein kinase C (PKC) through dissociation of the PKC-

protein phosphatase 2A complex (Lee et al., 2008). The Ahnak

protein also has been reported to be involved in a downstream

signaling pathway that regulates the expression of genes that

transform renal fibroblasts into more active myofibroblasts as

characterized by enhanced proliferation and contractility (Zhang

et al., 2009). In addition, evidence has indicated that Ahnak

serves as a lysine acetylation target that is involved in chromatin

remodeling (Choudhary et al., 2009; Deribe et al., 2009). We note

that AHNAK also showed interaction (score: 0.027; see Experi-

mental Procedures for details) with the HIF1A gene, which plays

a critical role in transcriptional gene activation involved in ccRCC

angiogenesis (Maxwell, 2005; Poon et al., 2009), by the protein-

protein prediction method.

In this regard, we further investigated the potential role of

AHNAK in this ccRCC patient by looking for correlations among

mutations in the known frequently altered genes (genes

harboring at least five nonsilent mutations) in the large ccRCC

patient cohort (Guo et al., 2012) with these biological findings

in mind. Of note, we observed positive correlations between
AHNAK and genes that have been shown to be involved in

lysine acetylation/histone deacetylases or chromatin remodeling

(p < 0.01; including VHL [Geng et al., 2011; Qian et al., 2006],

PBRM1 [Bourachot et al., 2003; Hargreaves and Crabtree,

2011], and JARID1C [Jensen et al., 2005]) (Figure 5B). This indi-

cated that mutations in AHNAK may alter the lysine acetylation/

histone deacetylases or chromatin remodeling-related pathways

and may further lead to abnormal EGFR pathways that finally

make the kidney cells proliferate malignantly.

To gain insight on the potential biological functional character-

istics of the potential cancer genes that we identified in this

tumor—genes that hadnot previously been identified asmutated

in ccRCC or other cancers—we carried out a gene ontology (GO)

(Ashburner et al., 2000) analysis. We found that these genes

were enriched in the categories of cell-cycle regulation, cell or

genome structure maintenance, and vascular development,

which are pathways commonly altered during tumorigenesis for

cancer initiation and development of metastasis (Table S5).

In addition to the genes noted above, there were other hill

genes that had been previously reported to have a functional

correlation with cancer development (Table S5). Interestingly,

we also found mutations in some drug response-related and

prognostic-related genes (Table S5). For example, PABPC1

has been identified as a prognostic indicator in some cancers

(Takashima et al., 2006), and RPL8 expression levels have been

correlated with response to chemotherapy (Salas et al., 2009).

DISCUSSION

We present a novel genetic characterization of a VHL/PBRM1-

negative ccRCC tumor by single-cell exome sequencing. Popu-

lation analysis of identified somatic mutations allowed us to

distinguish cancer from normal cells. Both our principle compo-

nent analysis (PCA) and phylogenetic analysis demonstrated

that no subpopulations could be observed in this tumor. Quanti-

fication analysis of tumor heterogeneity enabled the identifica-

tion of common and rare mutations and their unique characteris-

tics. To the best of our knowledge, the cell mutation frequency

and the corresponding ‘‘mountain’’ and ‘‘hill’’ genes provide

the first detailed intratumoral genetic landscape at a single-cell

level.

Of interest, the mountain gene AHNAK, which is involved in

chromatin-remodeling processes, was predicted to interact

with HIF1A in this VHL-negative patient. In addition, the hill

gene USP6 is a ubiquitin-mediated proteolysis pathway

(UMPP) gene that is able to initiate tumorigenesis by inducing
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Figure 5. Analysis of Genes of This Patient that Were Recurrently Mutated in the ccRCC Patient Cohort

Analysis includes 98 patients from Guo et al. (2012) and the patient of this single-cell exome sequencing study.

(A) Somatic mutations in AHNAK, LRRK2, SRGAP3, and USP6. The types and relative positions of confirmed somatic mutations are shown in the transcripts of

AHNAK (1), LRRK2 (2),SRGAP3 (3), andUSP6 (4) using the following symbols: red stars, nonsensemutations; bullets, missensemutations. Domains andmotifs in

each encoded protein product are indicated. ARM-like, Armadillo-like helical; MIRO-like, mitochondrial Rho-like; Se/Thr Kinase-like domain, serine/threonine

protein kinase-like domain; WD40 repeat-like, WD40/YVTN repeat-like-containing domain; FCH, Fps/Fes/Fer/CIP4 homology; RhoGAP domain, Rho GTPase-

activating protein domain; SH3 domain, Src homology 3 domain; RabGAP/TBC, Rab-GAP/TBC domain; Peptidase C19, ubiquitin carboxyl-terminal hydrolase 2.

See also Table 2 for details.

(B) Concurrent and mutually exclusive mutations observed in the genes known to be frequently mutated in this cohort. For each gene (row) indicated, tumors

(columns) with or without mutations are labeled in red or blue, respectively. We selected only genes harboring nonsilent mutations in at least five subjects for this

analysis.
the production of matrix metalloproteinases following NF-kB

activation (Ye et al., 2010). These recurrent chromatin remodel-

ing-related and UMPP-related genes identified here confirm

that genes in these two important biological processes that are

frequently mutated in a large patient cohort (Dalgliesh et al.,

2010; Guo et al., 2012; Varela et al., 2011) may potentially drive

cancer progression, as they are seen in an individual patient

lacking mutations in the known drivers of kidney cancer.

The mutations in hill genes (like USP6 [Figure 5A] and LRRK2)

that are present in only a small number of cells appear to play

roles in cellular modification, including ubiquitination processes

and GTPase activation, suggesting that the hill genes may
892 Cell 148, 886–895, March 2, 2012 ª2012 Elsevier Inc.
initiate a variety of processes that promote progression once

thecells haveundergonemutations that initiate cancer formation.

Among the mutated genes in this ccRCC patient, TUBB is

potentially interesting, as it plays a role in structure maintenance

(Hall et al., 1983); the truncating somatic mutation that we iden-

tified in six cancer cells could result in abnormal microtubule

development and could conceivably contribute to the instability

of cancer cells. The CCKBR gene, mutated in 12 cells, may

also be of interest for future study, as it encodes a G protein-

coupled receptor for gastrin and cholecystokinin (CCK) (Pisegna

et al., 1992). These regulatory peptides of the brain and gastro-

intestinal tract had a miss-spliced transcript variant, including



an intron observed in cells from colorectal and pancreatic tumors

(Caplin et al., 2000; Yu et al., 2006). Thus, alterations in CCKBR

function could have an impact on cell proliferation processes. A

final gene worth noting is the SULT1A1 gene, which mediates

metabolic activation of carcinogenic N-hydroxyarylamines to

DNA-binding products and serves as a modulating factor in

cancer risk (Liang et al., 2004; Tang et al., 2003; Zheng et al.,

2003).

In this article, we present a pilot study and analysis of how

biological insights may be derived from single-cell exome

sequencing of individual solid tumors. Single-cell exome

sequencing can provide detailed information on individual tumor

development and on its specific cell lineage origin. Though gene

discovery is an essential part of understanding cancer biology, an

important area for cancer research is understanding the develop-

ment of drug resistance and tumor relapse, which may best be

investigated on an individual basis (Audenet et al., 2011).

Single-cell sequencing analysis of individual tumorsmay provide

a good way forward for such studies, especially for genetically

complex tumors. Both clonal evolution and cancer stem cell

models suggest that drug resistance and tumor relapse are the

result of intratumoral heterogeneity and subpopulation diversity

of cancer cells (Marusyk and Polyak, 2010; Visvader, 2011). In

leukemia, data have shown that intratumoral clonal diversity

and architecture are important for diagnosis, relapse, and

outcome. This emphasizes the importance of targeted therapy

based on knowledge of the genetic and functional makeup of

intratumoral clones (Dalgliesh et al., 2010; Varela et al., 2011).

Our single-cell analysis of the mutant genes and their frequency

in the ccRCC tumor of this patient underscore the potential

capability of the single-cell exome sequencing for comprehen-

sive analyses of drug resistance and tumor relapse at an indi-

vidual level. Future work using similar single-cell sequence

analyses on numerous individual tumors may also aid in unravel-

ing and revealing differences and commonalities in tumor devel-

opment in a cross-section of patients, which could add another

level to cancer diagnosis and more effective targeted therapy.
EXPERIMENTAL PROCEDURES

Case Report

The patient in our study was a 59-year-old Chinese male with clear cell renal

cell carcinoma on left kidney classified as stage IV (T4N0M0) according to

the 2002 AJCC TNM classification of renal cell carcinoma. A signed written

consent was obtained before recruitment for the study, according to the regu-

lations of the institutional ethics review boards. Fresh samples were obtained

from this patient in Peking University Shenzhen Hospital on March 17, 2010.

Collection of Single Cells and Cell Lysis

Single cells from this fresh carcinoma were isolated immediately under

inverted microscope (Nikon Instruments Co., Ltd.) by a mouth-controlled

pipetting system. Then, each cell was transferred into a precooled PCR tube

containing cell lysis solution on ice. After that, sample in each tube was incu-

bated in a thermo cycler for 10 min at 65�C. A physiological saline blank was

done parallel as a negative control.

Multiple Displacement Amplification and Storage

Whole-genome amplification (WGA) was achieved on these samples using

REPLI-g Mini Kit according to the manufacturer’s manual (QIAGEN GmbH).

A reaction of a total volume of 50 ml was performed at 30�C for 16 hr and
then terminated at 65�C for 10 min. Amplified DNA products were stored

at �20�C.

Concentration Measurement and Amplification Coverage

Estimation

The concentration of MDA products was measured using the Qubit Quantiza-

tion Platform (Invitrogen Life Science). Ten housekeeping genes located on

different chromosomes were selected for PCR check of coverage of amplified

products. The MDA products amplified successfully by at least eight house-

keeping genes were selected for further procedures.

Library Preparation and Sequencing

Exome capture was performed following the procedure of Agilent SureSelect

Platform. The libraries were prepared following the protocol of Illumina library

preparation procedures. The sequencing processes were performed on

Illumina Hiseq 2000 platform.

Public Data Used

The human (Homo sapiens) reference genome sequence (Hg18) and its anno-

tation files were downloaded from UCSC Genome Bioinformatics (http://

genome.ucsc.edu/). The target region files of exome capture were down-

loaded from Agilent website (http://www.genomics.agilent.com).

Reads Mapping

Linker and adaptor sequences were masked before mapping. Short read pairs

were mapped to the NCBI Build 36 Human Reference Genome using

SOAPaligner version 2.20 (http://soap.genomics.org.cn/soapaligner.html)

with a maximum of three mismatches, nongap mapping model, and seed

length 32. The insert size distribution of each library was checked by Eland

contained in the Solexa Pipeline, and the parameter of insert size range was

set according to the Eland survey results. Reads that could only be mapped

to a unique exome capture target region were selected for consensus

sequence identification.

Consensus Sequence Calling

In each cell, consensus sequence was called using SOAPSNP version 1.03

using Hg18 as reference (http://soap.genomics.org.cn/soapsnp.html). To

confirm the best parameters of calling SNPs, the relationship between false

positive rate (FPR) and sequencing quality and depth was evaluated. First,

sites of quality of 99 and with depth between 253 and 403 were selected in

normal control mix DNA consensus sequence as control. We then looked at

the distribution of the discord rate between these sites and those in normal

control cells. Thus, the FPR represents the inconsistent rate of these sites

between normal single cells and the normal mixed tissue. As shown in Figures

S4 and S5, at sequencing depths greater than 63, the FPR is sharply reduced,

and at consensus sequence quality scores greater than 20, the FPR is also

sharply reduced. The consensus sequence of each cell was then filtered by

the following criteria: (1) quality value should be greater than 20; (2) sequencing

depth should be greater than 6; and (3) p value of the rank-sum test should

be greater than 0.05 (Li et al., 2009). Allele type, which was not satisfied with

these criteria, was marked as missing (‘‘�’’). Finally, all of these consensus

sequences were grouped into population genotype (Lam et al., 2010; Patter-

son et al., 2006; Xia et al., 2009; Yi et al., 2010).

Sites of Somatic Mutation Calling and Filtering

To train the best parameter for calling somatic mutations, we further evaluated

the false positive (FP) and false negative (FN) rates. For the FP evaluation, we

calculated the average FP rate based on the SNPs that we called. The average

FP rate is 2.67 3 10�5, which is consistent with previous reports (Ling et al.,

2009; Pugh et al., 2008; Spits et al., 2006). For the FN evaluation (especially

for the allele dropout, ADO), we compared the heterozygous rate between

each normal single cell and the normal mixed control. The average FN here

was 16.43%. Using a Binomial distribution model (considering FP as input

parameter), we determined that the presence of three or more cells having

a specificmutation in the cancer cell population provided sufficient confidence

to call a somatic mutation site as present in the cancer cell population. To

further avoid false positives, we also removed somatic mutation sites
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in situations in which the corresponding information in the normal mixed

control was at a sequencing depth of less than 103 or if the second best

base was covered by mutant reads. In total, we identified 260 sites of somatic

mutation in our whole data set.

Principle Component Analysis of Cells

Principle component analysis (PCA) was performed as in the previous popula-

tion genetic study (Lam et al., 2010; Xia et al., 2009) based on the sites of

somatic mutation that we called in 20 cancer cells. The eigenvector decompo-

sition of the transformed genotype data was performed using the R function

‘‘eigen,’’ and the significance of the eigenvectors was determined with

a Tracey-Widom test implemented in the program ‘‘twstats’’ provided with

the EIGENSOFT software (Patterson et al., 2006).

Construction of Phylogenetic Tree of Individual Tumor Cells

All sites of somatic mutation were used to calculate the genetic distances

between each single-cell sample. We constructed the tree of cell by the

neighbor joining (NJ) method (Saitou and Nei, 1987) based on Euclidean

distance of the difference in each cell. The weight was 0 when the genotype

of this cell was the same as the normal control; the weight was 0.5 when the

genotype of this site was missing; and the weight was 1 when the genotype

is different with the normal control. Then, the NJ tree was constructed by soft-

ware PHYLIP (http://evolution.genetics.washington.edu/phylip.html).

Concurrence and Mutual Exclusion Analysis

We performed the concurrence and mutual exclusion analysis on the signifi-

cantly mutated genes that showed nonsilent mutations in at least five tumor

cells by permutation test, as previously described (Sathirapongsasuti et al.,

2011), with minor modifications. We separated the significantly mutated genes

into different biological groups and calculated the possibility of concurrence

and mutual exclusion possibility between AHNAK and different biological

groups according to the method described in the reference.

ACCESSION NUMBERS

All sequencing data from this study are deposited in NCBI Sequence

Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the accession number
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