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Review

State of the Science: An Update on Renal Cell Carcinoma

Eric Jonasch1, P. Andrew Futreal1, Ian J. Davis4, Sean T. Bailey4, William Y. Kim4, James Brugarolas3,
Amato J. Giaccia5, Ghada Kurban6, Armin Pause7, Judith Frydman5, Amado J. Zurita1, Brian I. Rini8,
Pam Sharma1, Michael B. Atkins9, Cheryl L. Walker2, and W. Kimryn Rathmell4

Abstract
Renal cell carcinomas (RCC) are emerging as a complex set of diseases that are having a major socioeconomic

impact and showing a continued rise in incidence throughout theworld. As the field of urologic oncology faces these
trends, several major genomic and mechanistic discoveries are altering our core understanding of this multitude of
cancers, including several new rare subtypes of renal cancers. In this review, these new findings are examined and
placed in the context of the well-established association of clear cell RCC (ccRCC) with mutations in the von
Hippel-Lindau (VHL) gene and resultant aberrant hypoxia inducible factor (HIF) signaling. The impact of novel
ccRCC-associated genetic lesions on chromatin remodeling and epigenetic regulation is explored. The effects of
VHLmutation on primary ciliary function, extracellular matrix homeostasis, and tumor metabolism are discussed.
Studies of VHLproteostasis, with the goal of harnessing the proteostaticmachinery to refunctionalizemutantVHL,
are reviewed. Translational efforts using molecular tools to elucidate discriminating features of ccRCC tumors and
develop improved prognostic and predictive algorithms are presented, and new therapeutics arising from the earliest
molecular discoveries in ccRCC are summarized. By creating an integrated review of the key genomic andmolecular
biological disease characteristics of ccRCC and placing these data in the context of the evolving therapeutic
landscape, we intend to facilitate interaction among basic, translational, and clinical researchers involved in the
treatment of this devastating disease, and accelerate progress toward its ultimate eradication.Mol Cancer Res; 10(7);
859–80. �2012 AACR.

Introduction
A rapid series of discoveries in clear cell renal cell carci-

noma (ccRCC), bolstered by advances in genomic biology
and the embrace of targeted therapy, have ushered in a new
era of biological investigation and therapeutic opportunity
for this challenging disease. ccRCC is unresponsive to
traditional chemotherapies, highly resistant to radiation,
and lacks the hallmark genetic features of solid tumors, such
as KRAS and TP53mutations. The unique tight association
between ccRCC and mutations in the VHL gene, and the
resulting constitutive stabilization of hypoxia-inducible fac-
tor (HIF)-1a and HIF-2a have been the subject of intense
study for almost 2 decades now. Stemming directly from
studies of VHL insufficiency is an enhanced understanding

of the intricate relationship between this tumor type and the
tumor endothelial vascular network, and the result has been
the development of therapies that can not only reduce the
tumor burden but also extend the natural life expectancy of
patients with metastatic disease.
In this review, we examine recent developments that are

poised yet again to produce a paradigm shift in our under-
standing of the biology of ccRCC and other tumors, as well
as to generate a landscape that is ripe for the development of
new therapeutics. Experts from around the world provide a
concise description of the most relevant developments in
their field regarding ccRCC. Andy Futreal summarizes the
discoveries that have arisen from deep-sequencing studies
conducted over the last few years, and Ian Davis and Cheryl
Walker describe the impact of recently described mutations
on cellular behavior. The potential consequences of these
findings are enormous and provide an explanation for the
source of tumor heterogeneity as well as a target for ther-
apeutic intervention. Our understanding of the VHL gene
and HIF signaling continues to evolve as well. Pathways are
never as simple as they initially appear, and the intense focus
on HIF-1a signaling associated with VHL mutation has
gradually shifted to a focus on HIF-2a as the offending
culprit in this disease, with definitive evidence now available.
SeanBailey andWilliamKimdescribe these findings inmore
detail.
RCC is increasingly being recognized as a metabolic

disease, and key lesions in nutrient sensing and processing
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have been detected. These metabolic abnormalities provide
protection for the tumor but also may be a source of
vulnerability and therapeutic opportunity. James Brugarolas
and Amato Giaccia describe this important network. The
same is true for the recently described abnormalities in
extracellular matrix engendered by loss of VHL function,
which are elucidated by Ghada Kurban and Arnim Pause.
VHL is increasingly being recognized as an important
regulator of the primary cilium and, by extension, the cilia
centrosome cycle. A better understanding of the role played
by VHL in this pathway could potentially lead to insights
into RCC carcinogenesis. Cheryl Walker provides a sum-
mary of this complex and intriguing function.
It is well established thatVHLmutations lead tomalfolded

and poorly functioning VHL protein. A better understand-
ing of VHL proteostasis may allow us to develop strategies to
refold or otherwise refunctionalize point-mutated, full-
length VHL. Eric Jonasch and Judith Frydman report on
recent developments in this emerging field. Numerous
biomarkers have emerged to clarify the presence of hetero-
geneity among tumors that can be exploited for prognostic
value or intervention. Kimryn Rathmell reviews the emer-
gence of a molecular classification for RCC, and Amado
Zurita describes prognostic and predictive biomarkers under
development. The goal of all of these scientific efforts is to
offer patients better chances for survival and healthier lives.
The therapeutic options for ccRCC have evolved rapidly in
the last 6 years and continue to improve. Both targeted
therapies directed at features uncovered in molecular and
genetic studies and improved opportunities to redirect the
immune system have great potential to improve the outlook
for patients with ccRCC. Brian Rini describes current and
emerging molecularly targeted agents, and Pam Sharma and
Michael Atkins review the exciting new developments in
immunotherapy for RCC.

Genetics
RCC is a collective term applied to a set of cancers that

arise in the epithelium of renal tubules. It is comprised of 3
main histopathological entities. ccRCC is the dominant
histology, accounting for �65% of reported cases, followed
by papillary RCC (pRCC) and chromophobe RCC,
accounting for�15% to 20% and 5% of cases, respectively.
Other, rarer subtypes constitute the remainder of RCC cases,
including collecting duct, mucinous tubular, spindle cell,
renal medullary, and MiTF-TFE translocation carcinomas.
Hereditary RCC, which accounts for �4% of cases, has

been a relatively dominant area of RCC genetics. Causative
genes have been identified in several familial cancer syn-
dromes that predispose to RCC, including VHL mutations
in von Hippel-Lindau disease that predispose to ccRCC (1),
METmutations in familial papillary renal cancer (2), fuma-
rate hydratase (FH) mutations in hereditary leiomyomatosis
and renal cell cancer (HLRCC) that predispose to pRCC (3),
and folliculin (FLCN) mutations in Birt-Hogg-Dub�e syn-
drome that predispose to primarily chromophobe RCC (4).
In addition, germline mutations in the tuberous sclerosis

complex (TSC)1 and TSC2 genes predispose to tuberous
sclerosis complex. In the latter case,�3%of patients develop
ccRCC (5), and succinate dehydrogenase type B (SDHB)
germline mutations in patients with paraganglioma syn-
drome give rise to an increased risk of developing multiple
types of RCC (6).Moving away from raremonogenic disease
to population-based RCC susceptibility, we note that results
from a recent genome-wide association study of almost
6,000 RCC cases implicated loci on 2p21 and 11q13.3 in
RCC susceptibility (7). 2p21 contains the EPAS1 gene,
which encodes a transcription factor that is operative in
hypoxia-regulated responses, whereas the other region has no
known coding genes.
However, comparatively less progress has been made in

elaborating the somatic genetics of sporadic RCC. By far, the
most studied somatically mutated gene is VHL, which
follows the classic tumor-suppressor gene paradigm of a
germline cancer susceptibility gene that also manifests as a
somatically mutated gene in the sporadic form of cancer (8).
VHL is somatically mutated in up to 80% of patients with
ccRCC (9). The majority of these mutations are protein-
terminating mutations with loss of the wild-type (WT) allele
via large-scale loss of heterozygosity of chromosome 3p. A
small proportion of patients (5%–10%) have no apparent
somatic mutations that methylate the locus, and thus are
functionally VHL null (9, 10). Following a similar theme of
congruence of germline and somatic genetics, albeit with a
diminished magnitude of effect, a dominantly activating
kinase domain MET mutation has been reported in 4% to
10% of cases of sporadic pRCC (2). Conversely, somatic
mutations in FLCN in chromophobe RCC are rare (11), and
somatic FH mutations in sporadic papillary renal cancers
have not been found (11–13). Similarly, somatic mutations
of TSC1/2 and SDHB have not been identified in sporadic
RCC (12, 13). Recently, however, somatic mutations in
TSC1were found in sporadic ccRCC (14). TSC1mutations
occur in 5% of ccRCCs and may predict for extraordinary
sensitivity to mTORC1 inhibitors clinically (14).
Further investigation of RCC somatic genetics has includ-

ed evaluation of cancer genes that are important in other
adult epithelial cancers. Taking all histologies combined, the
COSMIC database (http://www.sanger.ac.uk/genetics/
CGP/cosmic/) reports somatic point mutations in TP53 in
10% of cases, KRAS/HRAS/NRAS combined � 1%,
CDKN2A 10%, PTEN 3%, RB1 3%, STK11/LKB1 �
1%, PIK3Ca � 1%, EGFR 1%, and BRAF � 1%. MYC
has been reported to be amplified in pRCC (15), and rare
cases of RCC have been reported with EGFR amplification
(16). Focusing on the most prevalent histology, ccRCC, the
contribution of cancer genes that are commonly mutated in
other tumor types provides limited insight into which
additional somatic genetic events contribute to pathogenesis.
With this as a background, investigators have undertaken

systematic approaches to elaborate the somatic genetics of
ccRCC. A screen of 3,544 protein-coding genes via PCR-
based exon resequencing in 101 cases of ccRCC identified
several new cancer genes in RCC (17, 18). Remarkably, 4
out of 5 genes with robust statistical support for being new
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cancer genes encode proteins involved in histone methyla-
tion/demethylation. Truncating mutations were identified
in KDM6A/UTX, SETD2, and KDM5C/JARID1C which
encode a histone 3 lysine 27 (H3K27) demethylase, H3K36
methyltransferase, and H3K4 demethylase, respectively.
MLL2, an H3K4 methyltransferase, was also found to be
mutated at a significant rate. These data implicate deregu-
lation of histone H3, which is known to be a major regulator
of euchromatin/transcription, as a new area of RCC biology
for exploration.Of note, and further confirming the utility of
large-scale systematic approaches,NF2 truncatingmutations
were unexpectedly identified in a significant proportion of
the small subset of ccRCCs that are VHL WT. Altogether,
however, these genes are mutated in <15% of ccRCCs,
suggesting the existence of additional cancer genes.
In a study involving solution capture and sequencing of

the coding exons of 20,000 protein-coding genes, Varela and
colleagues (19) used next-generation sequencing technolo-
gies to investigate ccRCC somatic genetics more compre-
hensively. They identified a secondmajor somaticallymutat-
ed cancer gene in ccRCC, and thus substantially reshaped
the field of RCC genetics. Truncating mutations in the
PBRM1 gene were identified in a remarkable 41% (92/227)
of ccRCCs (19). PBRM1 encodes the Baf180 protein, a
chromatin-targeting subunit of the SWI/SNF chromatin
remodeling complex that has been implicated in multiple
chromatin/transcriptionally mediated processes through
interactionwith histoneH3 (20, 21), reinforcing the striking
theme of deregulated chromatin in ccRCC biology. Of note,
VHL, SETD2, and PBRM1 are all located on chromosome
3p, thus providing a likely explanation for the near-patho-
gnomonic loss of 3p seen in ccRCC. Indeed, half of all cases
with a demonstrable VHL point mutation in this series had a
PBRM1 truncating mutation, and 9/9 cases with a SETD2
mutation also had concurrent VHL and PBRM1mutations.
This work framed important new areas for ccRCC basic and
clinical research.
Recent work involving deep sequencing on samples from a

variety of locations in individual large tumors and metastatic
lesions showed that considerable heterogeneity exists within
these tumors, suggesting a branched pattern of evolution
(22). Mutational events, such as the VHL mutation, were
ubiquitous to all samples; however, certain mutations were
present only in the primary tumor or the metastatic lesions,
and many mutations were private. Of particular interest,
different phylogenetic branches showed distinct SETD2
mutations, indicating a convergent pattern of selection for
certain genotypic events. More work to understand this
process and the implications for biomarker development is
needed.
Given the findings of these recent studies, it is certain

that other RCC cancer genes and driver mutations remain
to be identified. To that end, international efforts are under
way [by the International Cancer Genome Consortium
(http://www.icgc.org) and The Cancer Genome Atlas
(http://cancergenome.nih.gov)] to sequence large numbers
of RCCs at the whole-genome level, coupled with tran-
scriptomic and epigenomic analyses. This work is proceed-

ing at a rapid pace, and thus the comprehensive structure of
the somatic architecture of RCC should be revealed in the
next few years.

Epigenetics
Together with long-standing insights into HIF deregula-

tion through VHL loss, recent findings suggest that RCC
development may represent a nexus of epigenetic and
transcriptional deregulation, and exploration of epigenetic
modification could reveal critical biological properties and
offer clues to novel therapeutic approaches.

Genetic alterations in epigenetic regulators
As described above, high-throughput genetic studies of

RCC have identified recurrent mutations in genes encoding
several epigenetic regulators. Mutated genes have been
implicated in chromatin regulation through nucleosome
repositioning and histone tail modification. PBRM1, which
was found to be mutated in nearly 40% of human RCCs
(19, 23), is a component of the PolybromoBRG1-associated
factor complex (PBAF, SWI/SNF-B). PBAF, like SWI/SNF,
functions as a nucleosome remodeler and was shown to be
involved in transcriptional regulation (24–26). Less com-
mon mutations were also identified in 2 methyltransferases,
SETD2 and MLL2, and 2 demethylases, UTX (KDM6A)
and JARID1C [KDM5C (Fig. 1; ref. 17)]. Deletion of 3p, a
common finding in ccRCC associated with the loss of VHL
at 3p25, can also affect SETD2 and PBRM1, both at 3p21
(27). SETD2 mediates the trimethylation of H3K36 (28), a
histone mark that is placed during transcription and may be
important for maintaining faithful transcription (29, 30),
whereas MLL2 mediates H3K4me3, a mark associated with
active transcription. UTX demethylates H3K27me3 (32–
34), a histone mark associated with repressed chromatin. Of
interest, UTX associates with MLL2 (31, 34), suggesting
that demethylation of repressive marks is linked to place-
ment of marks associated with transcriptional activation.
JARID1C demethylates H3K4 (35). The finding of muta-
tions in MLL2 and JARID1C, which act oppositely on the
same residue, suggests that the genomic effects of mutations
in these genes are likely to be complex (Fig. 1). Although
some mutations may result in widespread epigenetic varia-
tion, others may induce effects in specific regions of the
genome (36).

HIF- and hypoxia-mediated epigenetic regulation
The hypoxia response pathway has been shown to have a

direct effect on histone modification. HIF was shown to
activate several chromatin demethylases, including JMJD1A
(KDM3A), JMJD2B (KDM4B), JMJD2C (KDM4C), and
JARID1B (KDM5B), all of which are directly targeted by
HIF (37–40). Reexpression of pVHL in VHL-deficient cell
lines increased H3K4me3 levels associated with decreasing
levels of JARID1C, a target of HIF2a (23). Silencing of
JARID1C in VHL-deficient tumor cells augmented tumor
growth in a xenografted mouse model, suggesting that
JARID1C acts as a tumor suppressor. In contrast, hypoxia
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may increase methylation through HIF-independent
mechanisms. Like HIF prolyl hydroxylase (PHD, EGLN3),
histone demethylases are members of the dioxygenase super-
family, which requires oxygen as well as iron and 2-oxoglu-
tarate for activity (41, 42). In a manner analogous to
stabilization of HIF via decreased hydroxylation, hypoxia
was shown to suppress JARID1A (KDM5A) activity, result-
ing in increased H3K4me3 levels (43). This suggests the
hypothesis that loss of demethylases (and, by analogy,
increased histone methylation) is part of a hypoxia pheno-
type that is selected for in RCC. This hypoxia phenotype,
which is mimicked by VHL loss, would also be mimicked by
loss of histone demethylase activity, which, as noted above, is
a high-frequency event in RCC.
Chromatin organization also influences HIF function.

Studies of HIF induced under conditions of hypoxia showed
preferential targeting of HIF to previously nucleosome-
depleted chromatin regions (26). Moreover, the coexpres-
sion of SWI/SNF components BRG1, BAF170, and BAF57
augmented HIF activity from an HIF responsive reporter
(25). This study showed that BRG1, but not BRM silencing,
decreased HIF responsiveness, suggesting that PBAFmay be
more critical for HIF function than SWI/SNF.
The extent to which mutations of epigenetic regulators

influence chromatin or HIF targeting remains unknown.
Because of the direct influence of hypoxia on demethylase
activity, it is likely that the relationship between epigenetic
variation and HIF targeting differs under conditions of
hypoxia in primary cells and in the context of specific
epigenetic alterations in tumor cells. Altering the activity
of an individual epigenetic regulator that functions as part of
a complex may result in pleiotropic effects resulting from
alterations in the stoichiometry of active complexes.
In addition to epigenetic regulation through histone tail

modification, DNAmethylation in RCC is well recognized.
Studies of tumors, urine, and RCC-derived cell lines have

shown hypermethylation of several tumor suppressor genes.
RASSF1 may be hypermethylated in more than half of
RCCs, with less common hypermethylation of VHL and
CDKN2A (10, 44–47). Additional studies have identified
methylation and silencing of other genes, including tissue
inhibitor of metalloproteinase 3 (TIMP3) and secreted
frizzled-related protein 2 (48–50). Genome-wide assays of
methylation and studies of differential methylation will
likely identify many more loci that are methylated in ccRCC
(51, 52); however, the relationship between DNA hyper-
methylation and histonemodification in the context of RCC
remains unclear.

Therapeutic implications
Epigenetic differences may predict variation in patient

outcome. Global decreases in H3K4 methylation and
H3K18 acetylation have been associated with decreased
patient survival (36, 53). Because epigenetic alterations and
transcriptional deregulation are central to RCC, employing
agents with predicted epigenetic influences may have an
effect on disease outcomes. In preclinical studies, treatment
with the histone deacetylase inhibitor vorinostat augmented
the activity of the mTOR inhibitor temsirolimus to induce
apoptosis in xenografted RCC cell lines (54). However, a
phase II trial of a differentHDAC inhibitor, panobinostat, in
patients with refractory metastatic RCC failed to show an
objective response (55). Amore precise understanding of the
role of epigenetic alterations could indicate other targetable
strategies.

HIFs and HIF Target Genes
TheHIFs are a family of transcription factors that contain

a basic helix-loop-helix domain and function in a hetero-
dimeric complex (56). HIFa has 3 subunits (HIF-1a, HIF-
2a, and HIF-3a) that heterodimerize with their binding
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Figure 1. A number of histone-
modifying genes are mutated in
RCC. These include the H3K36
trimethylase SETD2, the H3K27
demethylase UTX/KDM6A, the
H3K4 demethylase JARID1C/
KDM5C, and the SWI/SNF
complex component PBRM1,
shown in this cartoon to
represent their relative activities
on histone H3.
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partner, ARNT (HIF-1b), to transcriptionally regulate tar-
get genes containing hypoxia response elements (HRE).
HIF-1a and HIF-2a are the best characterized and are
known to regulate transcriptional programs associated with
cellular and physiological adaptation to hypoxia, such as
erythropoietin (EPO), VEGF, and carbonic anhydrase 9
(CA9) (57). Although there is significant overlap in genes
that are transcriptionally activated by HIF-1a and HIF-2a,
it is thought that eachHIF familymember also transactivates
unique target genes (58). For example, HIF-1a has been
linked to regulating genes in pathways associated with
glycolytic metabolism [e.g., SLC2A1 (GLUT1), LDHA,
and autophagy BNIP3], whereas HIF-2a is uniquely
responsible for transcriptionally activating genes associated
with proliferation (TGFa) and dedifferentiation (cyclin D1
and Oct4).

VHL regulation of HIF
An important realization regarding the molecular patho-

genesis of VHL-deficient RCC was that under conditions of
normoxia, the pVHL complex binds to and polyubiquiti-
nates HIFa subunits, resulting in their targeting and
destruction by the proteasome (56). The interaction
between HIF and pVHL is mediated by an enzymatic,
post-translational hydroxylation of HIF on conserved prolyl
residues by a family of HIF PHDs (or EGLNs). In keeping
with the notion that regulation of HIF is an important
function of pVHL, the majority of disease-associated VHL
mutations are predicted to abolish the interaction between
pVHL andHIF (59). Moreover, studies in mice suggest that
HIF activation (in particular HIF-2a) mediates the majority
of the phenotypes seen in the setting of VHL loss (60–62).

Role of HIF in RCC
Early in vitro and cell-line xenograft studies suggested that

although HIF-2a is both necessary and sufficient for the
growth of transformed RCC cell lines (63–65), HIF-1a is
not (66), indicating that HIF-1a is expendable for RCC
growth. However, it seems that HIF-1a is not merely
dispensable in the context of RCC but actually functions
as a tumor-suppressor gene. Several lines of evidence support
this hypothesis. First, targeted exon sequencing of RCC has
shown (albeit rarely) inactivating mutations in HIF-1a,
although copy-number analyses of RCC cell lines and
primary tumors suggest that the HIF-1a locus is frequently
lost along with the long arm of chromosome 14 [14q
(17, 67)]. Second, although allVHL-defective ccRCCs seem
to overexpressHIF-2a, and approximately one third of these
tumors seem to lack HIF-1a expression as well (68). Finally,
functional studies in vitro and in vivo suggest that over-
expression of HIF-1a in VHL WT cells restrains tumor
growth, whereas suppression of HIF-1a in VHL-deficient
cells enhances tumor growth (67, 69). Together, these
studies provide support for HIF-1a as tumor-suppressor
gene in renal cancer development andHIF-2a as a key driver
of renal cancer progression.
Although there are a number of possible explanations for

the contrasting properties of HIF-1a and HIF-2a in RCC

pathogenesis, one intriguing observation is that HIF-1a and
HIF-2a have opposing roles in the regulation of c-Myc
activity. Specifically,HIF-1a acts to suppress c-Myc activity,
whereas HIF-2a promotes the transactivation or transre-
pression of c-Myc–specific target genes (58, 68, 70). In
keeping with this notion, RCC tumors that exclusively
express HIF-2a have increased proliferation rates. Further-
more, intriguingly, a subset of ccRCC tumors seem to have
copy-number amplification of 8q24, where c-Myc resides
(71).

VHL Proteostasis
TwopVHL isoforms (a 213 amino acid, 30 kDa form, and

a 160 amino acid, 19 kDa, form) exist in the cell (72). In
order to function, pVHL must fold to its native conforma-
tion. The proper folding and functionality of pVHL require
its tight association with elongins B and C to give rise to a
VHL-elongin BC complex (herein termed the VBC). Failure
of pVHL to fold and to interact with elongin BC results in
misfolding and proteolytic degradation of pVHL (73). In
this section we discuss pVHL protein homeostasis (also
called proteostasis), and how disease-causing mutations
affect pVHL stability and functionality.
Molecular chaperones are essential mediators of protein

folding and quality control of most proteins in the cell.
Following synthesis on ribosomes, folding of functional
pVHL protein is the result of a complex interplay between
nascent pVHL and cellular chaperones. Nascent pVHL is
shuttled from the ribosomalmachinery with the assistance of
heat shock protein 70 [HSP70 (74)]. pVHL is then folded
into its tertiary structure via association with the chaperonin
TCP-1 ring complex [TRiC; also called chaperonin-contain-
ing TCP-1 (CCT)] (74–77). This hetero-oligomeric com-
plex consists of 2 stacked rings with a central chamber in
which unfolded polypeptides bind and fold. TRiC is respon-
sible for folding a number of key proteins that, like pVHL,
are also subunits of oligomeric complexes (75, 76, 78, 79).
Hsp70 likely functions to stabilize nonnative forms of
pVHL, whereas TRiC/CCT facilitates pVHL folding,
which is coupled to its incorporation into assembly of VBC
(75, 80, 81). Upon binding of VHL to elongin BC to form a
mature VBC, pVHL is released from TRiC (Fig. 2; ref. 74).
Binding of VHL to TRiC occurs at amino acids 114–119

and 148–155 [called Box 1 and Box 2, respectively (82)].
Both motifs, located in adjacent strands of the b-domain,
harbor tumor-causing mutations that disrupt association
withTRiC and lead tomisfolding of newly translated pVHL.
Mutations that block pVHL incorporation into awell-folded
VBC seem to result in destabilization and lower intracellular
levels of pVHL, although residual functionality is main-
tained in some cases (83). Further analysis of how specific
mutations affect the interaction of pVHL with chaperones
and chaperonins provides insight into targetable mechan-
isms of pVHL protein destabilization. Disease-causing
mutations in TRiC Box 1 and Box 2 binding sites
(82, 84, 85) prevent association of pVHL to TRiC, resulting
in a malfolded protein and the absence of a mature VBC in
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the cell. Disease-causing mutations also occur in the amino
acid 155–181 elongin C binding region (84, 85). This class
of mutants can bind to TRiC but cannot stably bind to
elongin BC. Loss of elongin C binding capacity seems to
prevent pVHL release from TRiC (82), resulting in a lack of
mature VBC.
Failure to generate a properly folded pVHL or a mature

VBC will result in pVHL degradation through the ubiqui-
tin-proteasome system. Chaperones are also involved in this
quality control process (82, 86). pVHL degradation specif-
ically requires another chaperone, Hsp90, which does not
participate in pVHL folding (86). The identification of 2
distinct pathways of chaperone interactions for pVHL, one
leading to folding and one to degradation, suggests that the
fate of pVHL may be controlled by a hierarchy of chaperone
interactions. Understanding the mechanism of how destabi-
lized pVHLmutants are targeted for proteasomal degradation
may lead to strategies for refolding and stabilization of a
pVHL that is functional and competent to complex with

elongins B and C. Bortezomib and MG132 are capable of
increasing levels of VHL, and a cell-based Prestwick com-
pound screen identified several compounds that upregulate
point-mutated VHL (87). Efforts to analyze the functional
consequences of pVHLupregulation using these compounds,
as well as an expanded screening effort, are under way.
In summary, our evolving understanding of proteostasis

will allow new therapeutic approaches to be developed for
VHL disease. Recalibrating the interaction between point-
mutated pVHL and the chaperones and chaperonins may
alter the disease phenotype and provide a benefit for patients
with lesions possessing either germline or sporadic VHL
mutations.

RCC: One of the Ciliopathies
Together with polycystic kidney disease (PKD), TSC and

VHL syndrome are considered ciliopathies (88). In PKD,
TSC2, and VHL deficiency, renal cysts develop following
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loss of gene function, often as preneoplastic lesions. One of
the hallmarks of cysts is dysfunctional primary cilia. All cells
possess a single primary cilium, a nonmotile organelle that
consists of a central microtubule axoneme anchored by the
basal body, surrounded by the ciliary membrane (Fig. 3). In
the kidney, the primary cilium projects from the apical
surface of renal epithelial cells into the kidney lumen, where
it responds to fluid flow and acts as a chemo-, osmotic,
mechano-sensor of the environment. Loss of primary cilia
results in dysregulated cell signaling, and cystogenesis in the
kidney and several other organs, and is one of the hallmarks
of many types of cancer, including RCC.
Several cell-signaling pathways that have been linked to

tumorigenesis [e.g., Wnt, Hedgehog, and platelet-derived
growth factor (PDGF) signaling] localize specifically to the
primary cilium and/or are spatially regulated by this organ-
elle (88, 89). In addition to aberrant signaling, the micro-
tubule organizing center (MTOC) that forms the founda-
tion of the primary cilium, the basal body, also functions in
the cell during mitosis as the centrosome (90). The fact that
this MTOC must shuttle between functioning as a basal
body for the primary cilia and a centrosome for the mitotic
spindlemeans that the cilia-centrosome cycle must be tightly
coupled to cell division to maintain genomic stability. The
cilia-centrosome cycle is important for maintaining genomic
stability. Centrioles of the basal body that serve as the
MTOC for the ciliary axoneme also serve as the MTOC
for the mitotic spindle. There, they function as the centro-
some, which is comprised of a pair of centrioles that are
responsible for spindle formation during mitosis. Thus, the
centrioles serve 2 distinct and mutually exclusive functions
in the cells, serving as the MTOC for either the mitotic
spindle (during M phase) or the primary cilium (during G0
–G1). The fact that this MTOC shuttles between these 2
functions means that the cilia-centrosome cycle must be
tightly regulated to guarantee the fidelity of centrosome
replication, spindle formation, and genomic stability.
Defects in cilia-centrosome cycle checkpoints have the
potential to cause inappropriate centrosome replication,

supernumerary centrosomes, and ultimately aneuploidy. Of
interest, it was recently shown that VHL localizes to the
mitotic spindle in mammalian cells, and causes spindle
misorientation and chromosomal instability when it is
defective or absent (91).
pVHL-, TSC-, and PKD-associated proteins also share a

common function: regulation of the structure and function
of the primary cilium. These renal cystoproteins are localized
at the primary cilium, where they exert a variety of cellular
responses (92, 93). For instance, PKD-1 plays a critical role
at the primary cilium, where it is involved in ciliary mechan-
otransduction. Several studies have indicated that VHL is
also involved in the biogenesis and function of the primary
cilia (92, 94, 95), and biallelic inactivation of this gene is
associated with loss of cilia (96). Consistent with this
observation, RCC of the clear cell type, associated with loss
of pVHL, showed markedly reduced cilia formation when
compared with papillary carcinoma (97). In addition, pVHL
binds to microtubules (91, 98) and colocalizes with the
acetylated tubulin in the cilia, where its mobility is depen-
dent on its association with Kif3A (99). In recent studies
linking TSC2 deficiency to ciliary defects, loss of TSC2 was
linked specifically to the development of aberrant primary
cilia (100). This abnormal ciliary phenotype was also asso-
ciated with loss of TSC1, which localizes to the basal body.

Regulation of the Extracellular Matrix
The extracellular matrix (ECM) is a complex structural

component that surrounds the cells and provides support. It
is composed of proteoglycans, hyaluronic acid, and glyco-
proteins such as fibronectin and many types of collagens
(101, 102). Disruption of its regular architecture has been
associated with tumor growth, angiogenesis, and metastasis.
pVHL plays an important role in the regulation of the ECM.
It was shown to interact directly with fibronectin and
collagen IV, resulting in their assembly into the ECM and
suppression of tumorigenesis, angiogenesis, and cell invasion
(103–107). Most pVHL mutants fail to bind and degrade

Figure 3. Immunofluorescent
images of primary cilia in VHLþ and
VHL� cells using the ciliary marker
a-acetylated-tubulin (red) and the
centrosomal marker anti-pericentrin
(green), counterstained for DNA with
DAPI (blue). The left panel shows a 3-
color merge of VHLþ cells, and the
right panel shows the absence of cilia
in VHL� cells. DAPI, 40, 6 diamidino
2 phenylindole.
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HIF-a; however, all pVHL mutants tested to date fail to
bind fibronectin and collagen IV, and lose the ability to
assemble an ECM (103–109). The interaction of pVHL
with fibronectin is mediated by pVHL neddylation, which
acts as a molecular switch in conferring selectivity to fibro-
nectin binding over CUL2 (107, 110), whereas its interac-
tion with collagen IV is dependent on endoplasmic reticu-
lum (ER) hydroxylation (105). The VHL-collagen IV inter-
action was shown to occur at the ERmembrane, with pVHL
binding to a 70 kDa fragment of the collagen IV amino
terminus that protrudes out of the ER into the cytosol (105).
The mechanistic significance of these interactions is still not
clear, but it was shown that pVHL did not affect fibronectin
and collagen IV production or secretion, and did not result in
collagen IV proteosomal degradation (104, 105).
The role of pVHL inECM regulation is independent of its

role in HIF-a regulation. Indeed, it was shown that inac-
tivation of the VHL-ECM assembly pathway results in
tumors that are highly vascularized, have a remodeled
fibronectin and collagen IV matrix, and show increased
invasive ability. Loss of the VHL-HIF-a regulation pathway
resulted in tumors with highVEGF levels but with decreased
angiogenesis, a tightly assembled fibronectin and collagen IV
matrix, and low invasive capacity. Therefore, although both
pathways cooperate in supporting tumorigenicity, ECM
remodeling may promote angiogenesis by providing a path
for blood vessels to infiltrate tumors (104).
Tumor cell invasion is dependent on adhesion and pro-

teolytic remodeling of the ECM, both of which are influ-
enced by pVHL activity. It was shown that pVHL regulates
adhesion molecules, and its inactivation leads to down-
regulation of the adherens junction protein E-cadherin and
stimulation of invasion in RCC (111–113). Loss of pVHL
function also leads to downregulation of the tight junction
proteins occludin and claudin in an E-cadherin–indepen-
dent manner (114). In these studies, disruption of both
adherens and tight junctions were mediated by loss of the
pVHL-HIF-a regulation pathway. In another study, pVHL
was found to downregulate integrins in an HIF-
a–independent manner, and this correlated with restoration
of tight and adherens junctions (115). Cells lacking pVHL
also fail to form b1 fibrillar adhesions, possibly contributing
to the increased cell motility and invasiveness seen in the
absence of a functional pVHL (116).
VHL pathways also regulate matrix metalloproteinases

(MMPs), a family of matrix-degrading enzymes that are
involved in ECM turnover. RCC cell lines lacking pVHL
showed increased invasiveness in growth factor–reduced
Matrigel, overproduced MMP-2 and -9, and displayed an
extensive branching morphogenesis phenotype in response
to hepatocyte growth factor/scatter factor as compared with
those withWT pVHL (117). Activation ofMMPs upon loss
of pVHL activity can be attributed to a disruption of both
VHL-ECMandVHL-HIF-a pathways. Loss of VHL-ECM
pathway regulation in RCC cells resulted in increased cell
invasiveness and activation of MMP-2 (104), and HIF-a
was also shown to influence RCC cell invasiveness by
regulating membrane type-1 MMP expression (118, 119).

Proteolytic remodeling of the ECM byMMPs was shown to
expose cryptic sites in collagen IV, normally hidden within
the triple helical structure, leading to loss of integrin a1b1
binding and a gain of binding to theavb3 integrin, resulting
in stimulation of angiogenesis (120). Antibodies directed
toward collagen IV cryptic sites led to inhibition of angio-
genesis, tumor growth, andmetastasis in vivo, suggesting the
importance of collagen IV matrix remodeling in these
processes (120–123).
The role of pVHL in maintaining ECM integrity and

suppression of tumorigenesis, angiogenesis, and invasiveness
is multifaceted and complex. It may result from the interplay
of several mechanisms that remain unresolved. It is possible
that pVHL mediates fibronectin and collagen IV modifica-
tion, allowing their proper assembly into the ECM. Loss of
these interactions would lead to an aberrant ECM, activation
of MMPs, ECM remodeling, release of ECM-sequestered
growth factors, and stimulation of tumorigenesis, angiogen-
esis, and invasion. Disruption of integrins and cell-adhesion
molecule regulation would further enhance the invasive
RCC phenotype. Understanding the mechanisms of ECM
regulation by pVHL could lead to additional or alternate
therapies [distinct from tyrosine kinase inhibitors [TKI]) for
patients with RCC.

RCC and Metabolism
An intimate link between metabolism and renal cancer

was established by the discovery that genes encoding
enzymes of the Krebs cycle suppress tumor formation in
kidney cells (124, 125). The Krebs cycle refers to 9 sequen-
tial enzymatic reactions implicated in oxidizing acetyl-CoA
generated from glucose, fatty acids, and amino acids to CO2
(Fig. 4). This cycle is essential to the process of mitochon-
drial ATP generation. SDH, a complex of 4 different
polypeptides (SDHA-D) that is also involved in electron
transfer, catalyzes the conversion of succinate to fumarate.
Heterozygous germline mutations in SDH subunits predis-
pose to pheochromocytoma/paraganglioma, and mutations
in SDHB and SDHD have also been associated with RCC
(6, 126).
FH catalyzes the next reaction of the Krebs cycle, the

conversion of fumarate to malate. Heterozygous germline
FH mutations cause HLRCC, a syndrome characterized by
cutaneous and uterine leiomyomas as well as RCC (3, 127).
RCCs occur in 20% to 50% of HLRCC families, are
typically pRCC type 2 [pRCC-2 (128)], and tend to be
very aggressive (129).
The FH and SDH genes function as 2-hit tumor-

suppressor genes (54, 125). Loss-of-function mutations in
the germline are usually accompanied by loss of heterozy-
gosity in the tumor, causing truncation of the cycle and the
accumulation of intermediates (130, 131). The accumula-
tion of succinate or fumarate causes the inhibition of a family
of 2-oxoglutarate-dependent dioxygenases normally impli-
cated in HIF-a hydroxylation (132–134). In the absence of
this modification, HIF-a evades recognition by pVHL and
accumulates, leading to increased HIF activity and tumor
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development (56). In addition, the accumulation of succi-
nate and fumarate results in the succination of proteins, such
as Keap1 (135, 136). Keap1 is a component of an E3
ubiquitin ligase that targets NRF2 for degradation, and its
succination blocks NRF2 degradation, resulting in its accu-
mulation and the increased expression of stress-response and
antioxidant genes (135–137).
Truncation of the Krebs cycle results in a compensatory

increase in glucose uptake and glycolysis (130, 138–140).
Accordingly, HLRCC-associated pRCC-2 are intensely flu-
deoxyglucose positron emission tomography (FDG-PET)–
positive (140, 141). Unlike other tumor cells, FH-deficient
pRCC-2 cells are unable to grow in low-glucose concentra-
tions (140). This dependency on glucose offers an oppor-
tunity for therapeutic intervention, and we recently reported
an attempt to treat an HLRCC patient with advanced
pRCC-2 refractory to mTORC1 inhibition with an inhib-
itor of glycolysis (141).
Metabolic derangements are also associated with muta-

tions in VHL. Germline VHL mutations predispose to
ccRCC (1). [The term "clear cell" (cc) stems from the fact
that the accumulation of lipid and glycogen gives a clear
appearance to the tumor cells in the tissue after processing.]
In contrast to VHL, SDH and FH genes are seldommutated

in the sporadic setting (11, 12). Of interest, although Vhl
mutations do not cause RCC in themouse, disruption in the
liver phenocopies the accumulation of lipid and glycogen
observed in ccRCC (60, 142–146). Thus, hepatocytes may
serve as a model for studying the role of VHL inmetabolism.
Acute Vhl disruption in hepatocytes results in an HIF-
dependent inhibition of mitochondrial respiration (146).
Deprived of Vhl, glucose and ketone production by hepa-
tocytes drops and the mice die within days (146). Although
the relative contribution of HIF-1 and HIF-2 remains to be
fully determined, HIF-2 may play an important role (145–
147). If a similar inhibition of mitochondrial respiration
occurs in ccRCCs, these tumors could be exquisitely sensi-
tive to glycolysis inhibitors.
Vulnerabilities arising from VHL loss in ccRCC are also

being exploited by means of synthetic lethal screens (148,
149). This was illustrated genetically in a study that screened
VHL-deficient ccRCC cell lines with shRNAs against kinase
targets (149). This screen identified several kinases that are
synthetically lethal in the setting of VHL loss, including
cyclin-dependent kinase 6 (CDK6), hepatocyte growth
factor receptor (MET), and dual specificity mitogen-acti-
vated protein kinase kinase 1 (MEK1). Small-molecule
inhibitors of CDK6 were also shown to reduce the viability

Figure 4. Regulation of PHDs by
TCA cycle intermediates. PHDs use
TCA cycle intermediates to help
catalyze the oxygen-, iron-, and
ascorbate-dependent addition of a
hydroxyl side chain to a Pro402 and
Pro564 of HIFa subunits, leading to
VHL binding and degradation.
Defects in either FH or SDH will drive
up levels of fumarate and succinate,
which competitively bind PHDs, and
preventHIFprolyl hydroxylation. This
results in higher intracellular HIF
levels.
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of VHL-deficient ccRCC tumor cells (149). In addition to
the shRNA approach, small-molecule screening has been
fruitful in identifying new targets that exhibit enhanced
cytotoxicity against VHL-deficient ccRCC. The compound
STF-62247 significantly reduced the survival of VHL-defi-
cient ccRCC in cell culture as well as in transplanted tumors
in immunodeficient mice. STF-62247 induces autophagy
and disrupts Golgi trafficking, which in VHL-deficient cells
leads to cell death (148). From the same screen, a second
compound, STF-31, was identified that also exhibits
enhanced cytotoxicity against VHL-deficient ccRCC.
STF-31 inhibits glucose uptake by the Glut-1 transporter
and induces necrotic cell death in VHL-deficient ccRCC
(150). The results obtained with this small molecule provide
evidence that targeting glucose metabolism directly in VHL-
deficient ccRCC could provide a therapeutic gain clinically.
Another pathway that has been implicated in RCC path-

ogenesis and plays an important role in metabolism is the
mTORC1 pathway (Fig. 5). mTORC1 is the target of two
U.S. Food and Drug Administration (FDA)-approved
drugs, temsirolimus and everolimus, and is a master regu-
lator of cell growth. mTORC1 integrates environmental and
cellular cues with the cell growth machinery (151). Signals
from energy stores (152), oxygen (153), and growth factors
(154) are largely transduced to mTORC1 through a protein
complex formed by the proteins TSC1 and TSC2. By
contrast, nutrients regulate the subcellular localization of
mTORC1 (155). Only in the presence of nutrients is
mTORC1 receptive to signals funneled through TSC1/
TSC2 (158, 159). The best characterized function of
mTORC1 is to promote protein translation, a process that
is mediated, at least in part, by the phosphorylation of S6K
and the eukaryotic initiation factor 4E-binding protein 1
(155, 156, 160). However, mTORC1 also plays an impor-

tant role in suppressing autophagy (155, 157) and regulating
mitochondria (160). In addition, several transcription fac-
tors are regulated by mTORC1. mTORC1 regulates HIF-1
(161–166), thereby coupling trophic functions to angio-
genesis. mTORC1 also regulates sterol regulatory element
binding protein1 (SREBP1), a master regulator of lipogen-
esis (167, 168). Finally, we recently reported that mTORC1
regulates the transcription factor EB [TFEB (169)], a con-
troller of lysosome biogenesis (170). Of interest, the TFEB
gene is translocated in a subset of RCCs (171, 172), and the
regulation of TFEB by mTORC1 may provide opportu-
nities for therapeutic intervention.

Defining New Molecular Subtypes of RCC
It is becoming increasingly clear that ccRCC is an incred-

ibly heterogeneous disease. Only recently have we learned
how thoroughly distinct are the differences between ccRCC
and non–clear-cell histologies, which in fact should probably
be considered as distinct diseases in terms of biology,
prognosis, and response to treatment (173–178). Indeed,
evenwithin the less commonpRCC type, we see two distinct
subtypes: pRCC-1 and pRCC-2 (179–184). These two
papillary subtypes are associated with distinct familial syn-
dromes: hereditary pRCC (associated with pRCC-1), caused
by germline mutations in the Met proto-oncogene (2), and
HLRCC [associated with pRCC-2 (125)], caused by FH, as
discussed above. The underlying genetic events in sporadic
versions of these two histologically defined subtypes are
undergoing investigation.
Within the category of ccRCC, heterogeneity has also

been widely appreciated, despite studies that revealed an
increasingly tight connection with mutation of VHL. As
discussed above,VHLmutation provides a permissive setting
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for the deregulation of HIF family members, notably HIF-
1a andHIF-2a (185). Therefore, tumors can be classified as
tumors that express both factors (H1H2), express only HIF-
2a (H2), or produce a functional pVHL (68). These
definitions reflect distinct patterns of gene expression and
signal transduction, and suggest that the HIF profile may be
important for selecting therapy. This method of subclassify-
ing ccRCC tumors has been hindered by the inconsistency of
assays for the highly labile HIF proteins. It may be best to
consider using a transcriptionally based instrument to assign
H1H2 versus H2 status in future studies.
Indeed, ccRCC provides an outstanding tumor model for

expression-based analyses, and numerous groups have laid
the groundwork for defining the heterogeneity of this tumor
classification based on transcriptional measurements. Stud-
ies based on supervised gene expression profiling of primary
tumors versus metastases, early versus late recurrences, or
short versus long survival have consistently shown differen-
tially expressed genes (175, 186, 187). Recently, Rini and
colleagues (188) reported on a transcriptional profile indic-
ative of poor risk for recurrence developed from paraffin-
embedded specimens, which indicates that expression-based
biomarkers are ready for translation to the clinic for pro-
spective evaluation.
In parallel, several groups have performed unsupervised

analyses to determine whether inherent subtypes exist within
ccRCC that can be defined by purely molecular means (189,
190). Two primary subgroups are found in relatively equal
abundance in unselected tumors, suggesting that ccRCC
may be represented by two major subclassifications, termed
ccA and ccB in recent analyses (191). The ccA and ccB
subclassifications share many similarities to the gene sets
identified in good-risk or poor-risk tumors described above,
respectively, in particular gene sets involved in local invasion,
and epithelial-to-mesenchymal transition. Moreover, when
the clinical outcomes are examined, groups of patients with
ccA show a long median survival of 8.6 years, whereas their

ccB counterparts have a median survival of only 2 years (P¼
0.002). The advantages of these emerging strategies of
subclassification include the potential to assign the profile
of an individual tumor, capture of molecular information
that is tied to genetic events that may be critical for selection
of targeted therapy, and prognostic models that also consider
clinically intermediate disease categories. A recent validation
by meta-analysis confirmed the presence of these ccA and
ccB subtypes, but also identified a subset defined by gene
expression indicative of a WT VHL and variant histology
consistent with the newly described clear-cell papillary
subtype (192, 193).
In spite of the hurdles ahead, it seems likely that molecular

strategies to classify individual tumors are on the horizon
(Fig. 6). In fact, the emerging data from clinically supervised
strategies to find risk-associated biomarkers, andmolecularly
driven strategies to identify patterns within unselected
tumors suggest that these two different approaches (top-
down and bottom-up) are leading to the same conclusion,
i.e., that ccRCC is composed of two dominant subgroups
that are closely aligned with clinical outcome. How this
information will enable physicians and patients tomake wise
decisions in themanagement of ccRCC and eventually select
the optimal pharmaceutical therapy remains to be seen, but
in the light of many emerging targeted therapies, such
information is likely to be highly valuable.

Biomarkers
The modern emergence of therapeutic options based on

an increased understanding of the genetics and molecular
biology of the RCC group of diseases has intensified the need
for biomarkers to accurately assess prognosis, identify
patients who are likely to benefit from therapy and specific
drugs or classes of drugs, and elucidate the mechanisms of
resistance. Here, we present a succinct overview of the most
recent advances in the development of biomarkers for RCC,

Figure 6. Different subtypes of
ccRCC can be defined by HIF
patterns as well as by transcriptomic
expression as defined by ccA and
ccB subtypes. pRCC also shows
distinct histological subtypes. A
recently described variant denoted
as clear-cell pRCC is VHL WT; other
clear-cell tumors are characterized
byVHLmutation, loss, or inactivation
(VHL MT).
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in particular for the clear-cell subtype. Although some are
promising, it is important to note that none of these
biomarkers are available for clinical testing at this time.
In clinically localized ccRCC, the emphasis has been

placed on biomarkers of prognosis expressed in tumor tissue.
Some of these biomarkers have been found to be indepen-
dently prognostic, such as the HIF-1a–regulated hypoxia
marker carbonic anhydrase IX (194), the antiapoptotic
protein survivin (195–198), the cell proliferation protein
KI-67 (199–202), and the immune inhibitory family of
ligands B7-H (203–205), but their clinical value is still in
question due to lack of independent and prospective vali-
dation. IMP3 (one of the insulin-like growth factor II
mRNA binding proteins), whose immunohistochemical
expression in tumor cells was found to be associated with
short metastasis-free survival and overall survival (OS), is a
rare exception because this finding was subsequently vali-
dated in an independent patient cohort (206, 207).
Cytogenetic and gene expression profiling studies have

also shown some potential to deliver prognostic information
in nonmetastatic ccRCC. In mostly small cohorts of
patients, specific chromosomal abnormalities have been
linked to good (5q gain) or poor (9p, 14q loss) prognosis
(208–210). However, the relation of 9p loss with poor
outcome (including prognostic value for small renal masses)
has been repeatedly observed (211, 212), making this a
logical candidate to incorporate into available prognostic
algorithms. A number of potential biomarkers related to
tumor development and progression have also emerged from
gene expression analyses, several of which identified gene
signatures associated with significant survival differences in
patients (189, 213, 214). However, as with the immuno-
histochemical and cytogeneticmarkers, these signatures have
not yet been validated. Work to validate these gene signa-
tures to predict risk of recurrence is ongoing.
In patients with advanced ccRCC, the availability of

effective treatments targeting the VEGF and mTOR path-
ways has shifted the focus toward a search for biomarkers,
predominantly in tumor tissue but also in blood, that are
capable of predicting therapy response and resistance.
Although the analysis of VHL gene status has not resulted
in consistent data to support either a prognostic or a
predictive value (215–219), the activation state of the HIF
subunits (68) and multiple HIF-responsive genes are being
examined. One HIF target (VEGF) and other angiogenesis-
related and tumorigenic factors in serumor plasma have been
evaluated across multiple clinical trials of targeted agents in
RCC. It has been established that higher baseline VEGF
levels are associated with worse tumor stage and grade,
performance status, and overall prognosis (220–225).More-
over, in a phase III trial of sorafenib versus placebo, patients
with VEGF in the highest concentration quartile obtained
greater relative benefit from sorafenib than those with lower
concentrations (225). However, studies addressing whether
VEGF is a predictive marker for identifying RCC patients
who are likely to benefit from VEGF-targeted therapies have
yielded inconsistent results (220, 225, 226). Preliminary
evidence supports the premise that proteomic plasma pro-

filing of cytokines and angiogenic factors (CAF) in plasma or
serum can be used to develop prognostic and predictive
biomarkers, andmay also contribute to molecularly improve
RCC classification (227). Using this approach, investigators
identified 2 broad groups of patients with metastatic ccRCC
patients: one predominantly expressing angiogenesis/hyp-
oxia-related markers, and one showing an alternative expres-
sion of inflammatory markers. Regarding clinical benefit
from VEGF inhibitors, a recent study in plasma samples
collected in subsequent phase II and III studies of pazopanib
identified low concentrations of interleukin (IL)-8, hepa-
tocyte growth factor (HGF), outer membrane protein
(OPN), and TIMP-1 with improved progression-free sur-
vival (PFS) on pazopanib (228). IL-8 was previously impli-
cated in resistance to sunitinib (229). Unfortunately, no
biomarkers that are predictive of differential benefit
between available and active drugs in RCC have been
validated. In a randomized phase II study of sorafenib
versus sorafenib in combination with interferon that yielded
no differences in PFS, a candidate 6-CAF signature con-
sisting of markers in the angiogenic/hypoxia group (OPN,
VEGF, collagen-IV, soluble CAIX, TRAIL, and soluble
VEGF receptor-2) predicted for distinct PFS in the 2 arms
(227). The results of similar analyses in larger patient sets are
eagerly awaited.

Immunotherapy
The ability of some renal tumors to evoke an immune

response, and the possibility that this may lead to sponta-
neous regression ofmetastatic RCC in some patients spurred
the idea of developing immunotherapy as an effective treat-
ment for patients with RCC (230–232). Various immuno-
therapeutic strategies have been tested, and many have
shown some evidence of activity (233, 234). Established
therapies consist of cytokines such as IFNa and IL-2. IFNa
was reported to provide a survival benefit in a meta-analysis
(235). High-dose (HD) IL-2 was shown to produce tumor
responses in �10% to 20% of patients, with some patients
achieving long-term response off treatment (236–240). The
FDA approved HD IL-2 as a treatment for metastatic RCC
in 1992 based on phase II data (236). However, both IFNa
and HD IL-2 are associated with substantial toxicities that
have limited their use (241, 242). In addition, due to the
emergence of novel VEGF- and mTOR-targeted therapies
that are comparatively easier to administer and better tol-
erated, and were shown to provide clinical benefit in phase
III clinical trials (243, 244), the use of IFNa andHD IL-2 as
a treatment for metastatic RCC has diminished. Clearly,
however, there is a subset of patients who derive a substantial
clinical benefit from immunotherapy. Efforts are ongoing to
elucidate themechanisms of action and identify predictors of
response to cytokine therapies such as IFNa andHD IL-2 in
an attempt to better select patients for treatment. In addi-
tion, novel immunotherapeutic strategies are being devel-
oped as a result of research in the field of basic immunology,
which has provided strong scientific and preclinical data to
enable successful immunotherapy trials.
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An improved understanding of the variousmechanisms by
which T-cell activation can be positively or negatively
regulated (Fig. 7) led to the development of agents that can
enhance antitumor T-cell responses. The first such agent,
and prototype, is anti-CTLA-4 antibody, which laid the
foundation for the development of other immune check-
point agents, such as anti-PD-1 antibody.
Upon engagement of the T-cell receptor with antigen

bound by MHC (signal 1) and costimulation provided by
CD28 interacting with B7-1 and B7-2 (signal 2), T cells
become activated to produce cytokines and proliferate (245,
246). However, T-cell activity must be regulated to prevent
damage to normal cells and tissues. Therefore, when T cells
are turned "on," a series of signals within the cells also

generate an "off" mechanism. This off switch is known as
CTLA-4. CTLA-4 acts to limit T-cell responses (247, 248).
The understanding of howCTLA-4 functions led to the idea
that an antibody that blocks CTLA-4, thereby temporarily
disengaging the off switch, would allow for enhanced T-cell
responses against tumors. This idea was validated in pre-
clinical models (249, 250) and then tested in clinical trials
(251–253). Two phase III randomized clinical trials were
completed, and showed a survival benefit for patients with
metastatic melanomawhowere treated with the anti-CTLA-
4 antibody known as ipilimumab [Bristol-Myers Squibb
(254, 255)]. On the basis of these data, ipilimumab was
approved by the FDA in March 2011 as a treatment for
patients with metastatic melanoma. Because anti-CTLA-4
targets a molecule expressed on T cells, as opposed to a
molecule on tumor cells, this therapy is potentially applicable
to multiple tumor types.
Anti-CTLA-4 has been evaluated in patients with meta-

static RCC. In a phase II trial, 2 cohorts of patients with
advanced RCC received 2 different dosing schedules of
ipilimumab: a 3 mg/kg loading dose followed by either
1 mg/kg or 3 mg/kg maintenance doses every 3 weeks
(256). Of the 21 patients who received the 1 mg/kg main-
tenance dose, 1 patient (4.7%) experienced a partial
response. Of the 40 patients who were treated with the 3
mg/kg maintenance dose, 5 (12.5%) experienced partial
responses. Of importance, responses were observed in
patients who had failed prior HD IL-2 treatment, suggesting
that there is no clear cross resistance. Given its recent FDA
approval for use in melanoma, ipilimumab will likely be
investigated further in patients with RCC.
PD-1 is another receptor that is expressed on activated T

cells (257). Interactions with PD-1 and its ligands (PD-L1
and PD-L2) can serve to inhibit T-cell responses. PD-L1was
shown to be overexpressed in many RCCs, and greater
expression was associated with worse prognosis (203).
MDX-1106, a monoclonal antibody directed against PD-
1, was recently assessed in phase I trials that included many
patients with advanced RCC (258, 259). Antitumor activity
was seen in a patient with RCC in the initial trial involving a
single dose of the PD1 antibody (258). In a subsequent study
(259), MDX-1106 was administered in doses of 1, 3, and
10 mg/kg given every 2 weeks. Of 16 patients with RCC
treated at various doses, 5 patients (31%) achieved objective
responses, including 1 complete response. This promising
activity, coupled with a mild toxicity profile, prompted the
initiation of a phase II trial of MDX-1106 in patients with
advanced RCC. Over the next several years, agents such as
ipilimumab and MDX-1106 will likely be assessed, possibly
with cytokines and other therapies in various sequences and
combinations, with the goal of achieving higher rates of
durable responses than is possible with currently available
therapies.

Molecularly Targeted Therapy
The biology of RCC as elucidated above has led to the

development of multiple agents that target elements of the
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relevant VEGF and mTOR pathways (260). Table 1 out-
lines the major phase III trials of targeted therapy in RCC
that led to regulatory approval of several agents. There are
several points to be made about the key discriminating
features of these agents. VEGF-targeted therapy produces
more robust Response Evaluation Criteria in Solid Tumors
(RECIST)-defined objective response rates than cytokine
therapy, on the order of 30% to nearly 50% for the most
active agents. Within the class of VEGF-receptor (VEGF-R)
inhibitors, the response rate can vary from 10% to nearly
50%, with the higher rates observed for drugs that more
potently inhibit VEGF-R. It is also recognized that antitu-
mor activity, especially that of VEGF-targeting agents, is not
entirely captured by size changes alone, as tumor necrosis
(reduced perfusion on a contrast-enhanced CT scan) is
thought to be indicative of drug effect and may or may not
be accompanied by tumor size reduction. mTOR-targeted
therapy in general produces more modest response rates of
2% to 10%, although to date mTOR-targeted and VEGF-
targeted therapies have been studied in different populations
(261, 262). With regard to the percentage of patients who
experience at least some tumor burden reduction on therapy
(including patients with a 1%–29% reduction, which does

not meet the arbitrary 30% reduction required for a
RECIST-defined response), VEGF-targeted therapy was
shown to shrink tumors in �75% of patients, and
mTOR-targeted therapy was shown to shrink tumors in
�50% to 60% of patients.
PFS is generally doubled with targeted therapy compared

with placebo/cytokines. Again, here we see important dif-
ferences among the VEGF-R inhibitors, with the biochem-
ically more potent agents producing a PFS of�11months in
untreated patients, compared with 5 months for the bio-
chemically weaker agent sorafenib. Axitinib is the most
biochemically potent of these inhibitors, but to date, only
results from previously treated patients are available (267).
Of note, in the subset of patients who were not exposed to
prior VEGF-targeted therapy in the AXIS trial (the cytokine-
refractory subgroup), the median PFS was >12 months.
With regard to PFS, the mTOR-targeting agents have been
studied in unique patient circumstances, i.e., poor-risk for
temsirolimus and VEGF-R TKI-refractory RCC for ever-
olimus (261, 262). The PFS for each was modest (�5
months), but the effect of these agents in first-line use in
good/intermediate-risk patients awaits further study. In
addition, the clinical activity of these drugs was more robust

Table 1. Phase III trials of targeted therapy in metastatic RCC

Trial (ref.)
Number of
patients Clinical setting RR (%) PFS (mo) OS (mo)

VEGF-targeted therapy
�AVOREN bevacizumab þ
IFNa vs. IFNa (264)

649 First-line 31 vs. 12 10.2 vs. 5.5
(P < 0.001)

23.3 vs. 21.3
(P ¼ 0.129)

�CALBG 90206
bevacizumab þ
IFNa vs. IFNa (265)

732 First-line 25.5 vs. 13 8.4 vs. 4.9
(P < 0.001)

18.3 vs. 17.4
(P ¼ 0.069)

Sunitinib vs. IFNa (243) 750 First-line 47 vs. 12 11 vs. 5
(P ¼ 0.0001)

26.4 vs. 21.8
(P ¼ 0.051)

�TARGET sorafenib vs.
placebo (266)

903 Second-line
(post cytokine)

10 vs. 2 5.5 vs. 2.8
(P < 0.01)

17.8 vs.15.2
(P ¼ 0.88)

Pazopanib vs.
placebo (267)

435 First-line/second-line
(post cytokine)

30 vs. 3 9.2 vs. 4.2
(P < 0.0001)

22.9 vs. 20.5
(P ¼ 0.224)

�AXIS axitinib vs.
sorafenib (263)

723 Second-line (post sunitinib,
cytokine, bevacizumab,
or temsirolimus)

19 vs. 9
(P ¼ 0.0001)

6.7 vs. 4.7
(P < 0.0001)

Not reported

mTOR-targeted therapy
�ARCC temsirolimus vs.
Tem þ IFNa vs. IFNa (244)

624 First-line, �3 poor-risk
featuresa

9 vs. 5 3.8 vs. 1.9 for IFNa
monotherapy
(P ¼ 0.0001)

10.9 vs. 7.3 for
IFNa (P ¼ 0.008)

�RECORD-1 everolimus vs.
placebo (261)

410 Second-line (post sunitinib
and/or sorafenib)

2 vs. 0 4.9 vs. 1.9
(P < 0.0001)

14.8 vs. 14.5

Abbreviations: ARCC, Advanced Renal-Cell Carcinoma; AVOREN, Avastin for Renal Cell Cancer; AXIS, Axitinib in Second Line;
CALBG, Cancer and LeukemiaGroupB;OS, overall survival; PFS, progression-free survival; RECORD-1, Renal Cell Cancer Treatment
with Oral RAD001 Given Daily; RR, response rate; TARGET, Treatment Approaches in Renal Cancer Global Evaluation Trial.
aIncluding a serum lactate dehydrogenase level >1.5 times the upper limit of the normal range, a hemoglobin level below the lower limit
of the normal range, a corrected serumcalcium level of >10mg/dL (2.5mmol/L), a time from initial diagnosis of RCC to randomization of
<1 year, a Karnofsky performance score of 60 or 70, or metastases in multiple organs.
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in untreated patients than in cytokine-refractory patients,
and less robust in patients who had already failed targeted
therapy. The OS rate in these trials is notable for several
reasons. The first-line trials of VEGF-targeted agents pro-
duced an OS of �2 years, roughly double that of historical
cytokine-treated controls. Nonetheless, no single trial (with
the exception of the temsirolimus trial in poor-risk RCC) has
shown a statistically significant OS benefit (despite a numer-
ical advantage in the median OS). This is largely believed to
be due to the high percentage of patients who cross over from
initial therapy on trial (placebo or cytokine) and receive one
or more active targeted therapies at progression. The efficacy
of such a sequential salvage strategy has confounded inter-
pretation of OS from these trials, although there is general
consensus that targeted therapy has meaningfully extended
the lives of patients with metastatic RCC.
There is no consensus regarding the best drug for initial

therapy or the optimal sequence of agents. Ongoing trials are
beginning to address these issues, but because of themultitude
of agents available and the relative rarity of RCC, definitive
trials are not possible at this time. Future research involving
targeted therapy for RCC will focus on issues such as the
relative toxicity/efficacy of various agents, the importance of
the switching mechanism at progression, and biomarkers of
response and resistance thatmay allow for improvement upon
the current standardof an empiric sequence ofmonotherapies.

Conclusions
There has been a clear and important evolution in our

understanding of RCC biology.We are now challenged with
converting this newly acquired information into actionable
items that will alter our approach to the prevention, diag-
nosis, and management of RCC. Several new rare types of
cancers are now recognized to occur in the kidney, whichwill
both challenge the urologic oncology community to main-
tain up-to-date guidelines for the management of these
tumors and provide new opportunities to develop effective
personalized therapies.
By comparing genomic, transcriptomic, and epigenetic

data from precursor lesions and early ccRCC, we will be able
to establish a roadmap of tumor ontogeny for this more
common subtype. To achieve this goal, it will be essential
to use material from patients with hereditary VHL disease.
These data, in conjunction with epidemiological and labora-
tory-based studies, will allow investigators to identify driver
mutations and epigenetic changes, and thus facilitate the
development of markers that will permit early identification
of ccRCC. In the samemanner, studies of the cilia centrosome
cycle and HIF regulation will provide a mechanistic, molec-
ular biological understanding of early cancer development,
with resultant opportunities for therapeutic intervention.
In more advanced disease, studies of genomics, transcrip-

tomics, andmolecular biologywill enable investigators to gain
insight into the mechanisms of tumor progression, especially
if they are conducted in parallel with in vitro and in vivo
models employing potential driver pathways that have been
identified in ccRCC or other rare variant cancers. The hope is
that by understanding both the cause and the consequence of

the complex interactions between genomic and epigenetic
changes, and assigning significance to the output of these
alterations, we will be able to replicate RCC tumor diversity,
identify subgroups, and develop more specific therapeutic
interventions. Achievement of this goal will require a coor-
dinated interaction among high-throughput platform experts,
molecular biologists, and computational scientists who are
capable of controlling and codifying the complex systems that
arise from these collaborations. The recognition that the
output of these changes is profoundly influenced by host
genomic and phenotypic characteristics, and that the tumor
microenvironment varies as a function of these characteristics,
necessitates the development of precise tools to measure the
tumor microenvironment.
Finally, the renaissance of tumor immunology has been

fueled by the recognition that tumors can take advantage of
the innate regulatory pathways that are built into T cells and
other immune effectors. As we begin to understand the
impact of tumor biology on T-cell regulation, as well as on
the recruitment of bone marrow–derived immunological
precursors, significantly better treatments will become avail-
able for patients with ccRCC in the next few years. Under-
standing the interface between evolving tumor biology and
the host genomic determinants of the stromal endothelial
phenotype will further advance this field.
We are poised to make very significant advances in RCC

research in the next few years. With the right team and the
right tools, the achievement of a truly personalized approach
to treatment is within reach.
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