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Abstract

Background: Gene expression signatures have proven to be useful tools in many cancers to identify
distinct subtypes of disease based on molecular features that drive pathogenesis, and to aid in
predicting clinical outcomes. However, there are no current signatures for kidney cancer that are
applicable in a clinical setting.
Objective: To generate a signature biomarker for the clear cell renal cell carcinoma (ccRCC) good risk
(ccA) and poor risk (ccB) subtype classification that could be readily applied to clinical samples to
develop an integrated model for biologically defined risk stratification.
Design, setting, and participants: A set of 72 ccRCC sample standards was used to develop a 34-gene
classifier (ClearCode34) for assigning ccRCC tumors to subtypes. The classifier was applied to RNA-
sequencing data from 380 nonmetastatic ccRCC samples from the Cancer Genome Atlas (TCGA), and
to 157 formalin-fixed clinical samples collected at the University of North Carolina.
Outcome measurements and statistical analysis: Kaplan-Meier analyses were performed on the
individual cohorts to calculate recurrence-free survival (RFS), cancer-specific survival (CSS), and
overall survival (OS). Training and test sets were randomly selected from the combined cohorts to
assemble a risk prediction model for disease recurrence.
Results and limitations: The subtypes were significantly associated with RFS ( p < 0.01), CSS
( p < 0.01), and OS ( p < 0.01). Hazard ratios for subtype classification were similar to those of stage
and grade in association with recurrence risk, and remained significant in multivariate analyses. An
integrated molecular/clinical model for RFS to assign patients to risk groups was able to accurately
predict CSS above established, clinical risk-prediction algorithms.
Conclusions: The ClearCode34-based model provides prognostic stratification that improves
upon established algorithms to assess risk for recurrence and death for nonmetastatic ccRCC
patients.
Patient summary: We developed a 34-gene subtype predictor to classify clear cell renal cell
carcinoma tumors according to ccA or ccB subtypes and built a subtype-inclusive model to analyze
patient survival outcomes.
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Fig. 1 – Workflow for biomarker discovery: steps taken to identify the
34 genes that classify ccA and ccB tumors.
LAD = logical analysis of data.
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1. Introduction

The majority of renal cell carcinoma (RCC) or kidney cancer

patients have the clear cell RCC (ccRCC) subtype. Although

extensive effort has been devoted to identifying molecular

biomarkers for RCC, there are few validated markers that aid

disease prognosis, and none are used routinely in clinical

practice [1–6]. Thus, transcriptional biomarkers present a

potentially target-rich environment toward the goal of

improving our understanding of underlying ccRCC biology.

Recently, we identified two subtypes of clear cell RCC,

ccA and ccB, based on patterns of differential gene

expression, that revealed distinct biologic signatures [7].

These subtypes appear to provide prognostic information,

with tumors classified as ccA associated with significantly

better survival compared to ccB in a retrospective cohort

[7]. The ccA/ccB classification was subsequently validated

in a meta-analysis of 480 ccRCC tumors, suggesting this

profile may have value for risk stratification [8].

Building on this foundation, in the present study we

demonstrate the utility of a novel tool to identify the ccA

and ccB groups in ccRCC. This molecular tool comprises a

34-gene expression signature (ClearCode34) and an accom-

panying protocol for ccA/ccB classification. Clinical utility of

the classifier is demonstrated by (1) accurate and repro-

ducible classification of ccRCC tumors into ccA and ccB

molecular subtypes, (2) validation of prognostic classifica-

tion, (3) adaptation to clinical samples in the form of

formalin-fixed paraffin-embedded (FFPE) tissues, and (4)

constructing a more precise unified model of ccRCC subtype

and standard clinical variables to assign individual ccRCC

patients into clinically informative risk categories.

2. Patients and methods

2.1. Patients and clinical samples

The ccRCC samples (n = 95) previously analyzed by gene expression

microarray were clustered to define the ccA and ccB classifications [7]. Of

these, 72 were chosen as references to develop the 34-gene panel based

on concordant subtype classifications determined by two methods:

logical analysis of data and ConsensusCluster [7–9] (Fig. 1a).

Prognostic assessment of ClearCode34 was performed using RNA-

sequence data of the Cancer Genome Atlas (TCGA). Median follow-up for

this cohort was 38 mo (range: 0–113 mo), with seven patients having no

follow-up. Clinical data (last modified August 23, 2013) were downloaded

from TCGA Data Portal [10]. Expert members of TCGA Analysis Working

Group performed pathologic re-evaluation, and cases not definitively

representing clear cell histology were excluded from further analysis [11].

Recurrence and survival data were taken from TCGA Biotabs database,

with appropriate permissions, with supplementation by the clinical TCGA

working group database (version dated April 11, 2013) [10].

Clinical utility of ClearCode34 was performed using randomly

selected specimens collected between 1992 and 2010 at the University

of North Carolina (UNC) from patients with nonmetastatic ccRCC, and

stored in the pathology archive as formalin-fixed paraffin-embedded

(FFPE) blocks. Median follow-up for this UNC cohort was 54 mo (range:

3–232 mo). Stage was reclassified using the American Joint Committee

on Cancer’s Cancer Staging Manual, 7th edition (AJCC-7) for all cases

preceding 2010 and an expert genitourinary oncologist and an expert

surgical pathologist verified clinical and pathologic variables.
Only patients with nonmetastatic disease at the time of nephrectomy

were used for the study. This did include a small number of patients with

T4 lesions and who had extensive local disease classified by AJCC-7 as

stage IV but M0 with regard to distant metastasis. No patients received

systemic therapy for ccRCC before nephrectomy or prior to clinical

recurrence. All samples and data were obtained with appropriate

institutional review board approvals.

2.2. The Cancer Genome Atlas data analysis

TCGA RNA sequence data were normalized to the upper quartile of

normal counts. For analysis, the data were log-transformed (base 2) and

genes were median centered.

2.3. Formalin-fixed paraffin-embedded sample preparation

UNC cohort FFPE samples were sliced (5–7 mm thick) onto slides or

prepared as scrolls 10–20 mm thick. The surface area of the tissue

sectioned was a minimum of 1 cm2. Xylene was added and washed twice

with 100% ethanol. Pellets were suspended in 10 mM 2-(N-morpholino)

ethanesulfonic acid pH 6.5 or Proteinase K digest buffer (Qiagen

Gaithersburg Inc, Gaithersburg, MD, USA) with 0.5% SDS and 5 ml

Proteinase K (20 mg/ml). Suspensions were incubated (55 8C), Proteinase

K inactivated (80 8C), and supernatant collected.

2.4. NanoString analysis

The UNC genomics core processed 5 ml lysate or 100 ng RNA for

hybridization against NanoString probes (NanoString Technologies Inc,

Seattle, WA, USA) [12], posthybridization in the nCounter Prep Station,

and data collection with the nCounter digital analyzer (NanoString

Technologies Inc, Seattle, WA, USA). Sample-specific background was

subtracted using values from included negative controls. Data were

normalized using the geometric mean of housekeeping genes and log

transformed (base 2). See the Supplement for methods details.

2.5. Development of a gene expression classifier of ccA or ccB

To develop a minimal gene set classifier for assigning ccA or ccB subtype,

prediction analysis of microarray (PAM) [13], a centroid-based



Table 1 – Expression of ClearCode34

Gene ccRCC subtype

MAPT ccA

STK32B ccA

FZD1 ccA

RGS5 ccA

GIPC2 ccA

PDGFD ccA

EPAS1 ccA

MAOB ccA

CDH5 ccA

TCEA3 ccA

LEPROTL1 ccA

BNIP3L ccA

EHBP1 ccA

VCAM1 ccA

PHYH ccA

PRKAA2 ccA

SLC4A4 ccA

ESD ccA

TLR3 ccA

NRP1 ccA

C11orf1 ccA

ST13 ccA

ARNT ccA

C13orf1 ccA

SERPINA3 ccB

SLC4A3 ccB

MOXD1 ccB

KCNN4 ccB

ROR2 ccB

FLJ23867 ccB

FOXM1 ccB

UNG2 ccB

GALNT10 ccB

GALNT4 ccB

ccRCC = clear cell renal cell carcinoma.

Table 2 – Patient demographics and clinical characteristics of The
Cancer Genome Atlas cohort

Characteristic No. %

Sex

Male 243 64

Female 137 36

Age

Median 61

Range 29–90

Ethnicity

White 330 87

Black 17 5

Hispanic 20 5

Asian 8 2

Unknown 5 1

Fuhrman grade

I 6 2

II 181 48

III 150 39

IV 37 10

Unknown 6 1

Staging (TNM)

I 216 56

II 45 12

III 116 31

IV 3 1
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classification algorithm, was applied to the microarray reference data

(Fig. 1). PAM was used due to its reproducibility in subtype classification

compared to other centroid-based prediction methods [14]. We used a

list of genes (Supplemental Table 1) that encompassed those previously

associated with ccA/ccB classification [7], genes differentially expressed

between the ccA/ccB subtypes using significance analysis of microarrays,

and other published markers [2–6]. Ninety-four percent of the tumors

were classified correctly (68 of 72) using a PAM model of 34 genes

(Table 1) based on nearest centroids. This gene list was labeled

ClearCode34.

Cross-validation (random 10% left out in each of 50 cycles) was

applied to the microarray reference set to evaluate the accuracy of the

classifier and anticipated performance on independent sample cohorts.

Unsupervised clustering and ConsensusCluster [9] were used to further

assess assignment accuracy by the minimized gene panel in the

microarray standard set by comparing PAM-derived subtype assign-

ments with those determined previously [7].

2.6. Statistical analysis

All continuous variables were described with the median and range

values. Recurrence, or relapse, was defined as the date from nephrec-

tomy to the date that recurrence or metastasis was detected by imaging

or pathology report. Cancer-specific survival (CSS) was defined as the

time from nephrectomy to death resulting specifically from ccRCC;

patients who remained alive, died of other reasons, or had unknown

causes of death were censored for this outcome at the date of last follow-

up or death. Overall survival (OS) was defined as the time from the
nephrectomy to death of any cause. The probability of death or

recurrence was determined by using the Kaplan-Meier method, with

log-rank tests assessing the differences between the groups. CSS was

analyzed using the competing risk method (cmprsk R package; R Project

for Statistical Computing, Vienna, Austria). Cox proportional hazard

models and likelihood ratio using OS, CSS, and recurrence outcomes

were used to compare competing survival models. ccRCC subtype,

Fuhrman grade, and stage were modeled as additive predictors of

outcome. Cox proportional hazard models were used to estimate hazard

ratios (HRs) and 95% confidence intervals (CIs).

2.7. Developing a relapse risk model

The TCGA and UNC cohorts were combined to develop a risk model for

tumor relapse (Fig. 2). The combined cohort consisted of 531 patients,

after removing six patients with missing grade information. The

combined cohort was randomly split into two sets of equal size for

use as training and evaluation cohorts for the prognostic model. Samples

were used only once for either the training or test set. A multivariable

Cox model with ccA/ccB subtype, stage, and Fuhrman grade as additive

terms was fit with Ridge regression. Tenfold cross-validation was

performed in the training set to optimize the penalty parameter. A final

model was fit to the entire training set using the optimized parameters

and then applied to the test set. See the Supplement for details in

identifying risk groups and assigning cases.

3. Results

3.1. Subtype comparison for prognosis and recurrence in the

Cancer Genome Atlas data set

To evaluate the prognostic utility of ClearCode34 for ccA

and ccB ccRCC tumors, Kaplan-Meier analysis was used to

assess tumor recurrence and survival rates by subtype

assignment in tumor samples from 380 nonmetastatic

ccRCC patients from the TCGA data set (Table 2). Univariate
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ClearCode34

Analyze ClearCode34
in TCGA data (n = 380)

Validate Clea Code34
in UNC cohort (n = 156)

Training set (n = 265) 

Combine TCGA and UNC
cohorts (n = 530)
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relapse risk model  

Removed six samples that
had missing grade

information
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Fig. 2 – Order of analyses to develop and validate the relapse risk model. Diagram of analyses to validate the efficiency of the biomarkers to classify tumors
and predict prognostic outcomes.
TCGA = the Cancer Genome Atlas; UNC = University of North Carolina.
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Fig. 3 – Tumor classification from the Cancer Genome Atlas (TCGA) shows distinct prognostic outcomes. Prediction analysis for microarray classified 380
untreated, nonmetastatic clear cell renal cell carcinoma tumors from TCGA as either ccA or ccB, using the 34-gene classifier, ClearCode34. Kaplan-Meier
curves were used to calculate (A) recurrence-free survival (RFS), (B) cancer-specific survival (CSS), and (C) overall survival (OS) for ccA and ccB patients.
ccB-typed patients had a median RFS and OS of 53 and 65 mo, respectively, while patients with ccA-typed tumors had a 50% survival probability of 91 and
94 mo for RFS and OS, respectively.
HR = hazard ratio; CI = confidence interval.
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Table 3 – Patient demographics and clinical characteristics of the
University of North Carolina cohort

Characteristic No. %

Sex

Male 94 60

Female 63 40

Age

Median 58

Range 19–82

Ethnicity

White 102 65

Black 44 28

Hispanic 5 3

Asian 1 1

Native American 5 3

Fuhrman grade group

I 3 2

II 70 45

III 70 45

IV 14 8

Staging (TNM)

I 78 50

II 23 14

III 56 36
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analysis revealed ccB patients experienced tumor recur-

rence earlier and more frequently than ccA (HR: 2.3; 95% CI,

1.6–3.3; p = 4.3 � 10�6) (Fig. 3A). Moreover, ccB patients

had almost three times the risk of death from disease (HR,

2.9; 95% CI, 1.6–5.6; p = 0.0005) and more than two times

the risk of death from any cause compared to ccA (HR: 2.4;

95% CI, 1.6–3.7; p = 2.3 � 10�5) (Fig. 3B and 3C). Competing

risk analysis further validated the differences in survival

between the subtypes, which showed their specificity as

prognostic tools for ccRCC (CSS, p = 0.002; OS, p = 0.037).

3.2. Biomarker validation in an independent cohort

Since ClearCode34 demonstrated prognostic value in the

TCGA cohort from known clinical samples, we next

validated the classifier in an independent group of clinical

specimens using the NanoString platform. Applying the

classifier to a cohort of 157 nonmetastatic ccRCC, archived

FFPE samples (Table 3), 69 samples were assigned as ccA

subtype and 88 as ccB, and, again, the subtype classifica-

tions followed survival patterns seen previously (Fig. 4). In

this cohort, ccB cases experienced tumor relapse after

nephrectomy more frequently (HR: 2.1; 95% CI, 1.3–3.4;

p = 0.001) (Fig. 4A) and had higher risk of both cancer-

specific mortality (HR: 3.0) (Fig. 4B) and overall mortality

(HR: 2.2) (Fig. 4C) compared to patients classified as ccA. In

addition, cancer-specific deaths ( p = 0.013), but not overall

deaths ( p = 0.344), remained significant between subtypes

after competing risk analysis.
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Fig. 5 – ClearCode34 prognostic model can evaluate patient risk. A randomized training set of 265 patients from the Cancer Genome Atlas (TCGA) project
and clinical cohorts were used to train a model to identify low-, intermediate-, and high-risk groups for tumor recurrence using clear cell renal cell
carcinoma (ccRCC) subtype status (ccA/ccB), tumor stage, and histologic Fuhrman grade. The model was applied to the test set (n = 266) to predict (A)
recurrence and (B) cancer-specific death, revealing a highly significant risk profile integrating clinical and biologic features. (C and E) Co-occurrence
index (C-index) and (D and F) multivariate analysis validated the efficacy of the model using the three risk groups to predict risk of ccRCC death over
the established algorithms University of California, Los Angeles Integrated Staging System (UISS or UI) and Mayo Clinic Stage, Size, Grade, and Necrosis
(SSIGN or SS) score. Chi-square statistic values resulting from multivariate regression depict the additive value of the three risk models.
*p < 0.05.
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recurrence was assembled using a combined cohort

including both the TCGA and UNC cohorts. In the final

model, subtype classification ( p = 0.0009), Fuhrman grade

(I/II vs greater; p < 0.0001), and stage (stage I vs greater;

p = 0.0007) were found to be significant independent

variables for predicting recurrence-free survival (RFS)

(Supplemental Table 2). Likelihood ratios verified that

subtype status was a prognostic factor even after adjust-

ment for stage and Fuhrman grade.

A training set was randomly selected from the

combined cohort and used to train the risk prediction

model, focusing on recurrence. Thresholds for identifying

patients for high probability of recurrence within 5 yr

following surgical resection were determined by Ridge

regression, fit to the training set, and used to stratify low-,

intermediate-, and high-risk groups of relapse

( p = 3.04 � 10�9) (Fig. 5A). The high- and intermediate-

risk groups had a median time to recurrence of 23 and

85 mo, respectively. A 50% survival probability failed to

be reached by the low-risk group. Similarly, the three risk

groups showed similar survival trends for cancer-specific
death after applying the thresholds determined for RFS

( p = 2.03 � 10�8) (Fig. 5B).

Furthermore, we compared our risk assessment tool

with existing clinical nomograms to predict death from

ccRCC, using multivariate and co-occurrence index

(C-index) analysis (Fig. 5C–5F). Our analyses show

superiority in assessing risk of ccRCC death by C-index

analysis using prognostic classification (ClearCode34

model) compared to the University of California, Los

Angeles (UCLA) Integrated Staging System (UISS) [15] and

the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN)

score [16]. Not only did our model better predict disease-

specific events (Fig. 5C and 5E), but it also was additive

independently of both UISS (UISS–>model) and SSIGN

(SSIGN–>model) (Fig. 5D and 5F), indicating added

prognostic information for disease-specific outcomes.

Interestingly, subtype classification alone outperformed

the UISS algorithm (data not shown). Thus, using

ClearCode34 enhances risk stratification, which may

guide future clinical planning regarding patient surveil-

lance and adjuvant therapy.
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4. Discussion

We developed ClearCode34 to adapt the ccA/ccB ccRCC

classification to the real world of clinical practice. In this

study, we used NanoString to measure expression profiles

in clinical specimens. This modality is an emerging, highly

reproducible, and low-cost technology for gene expression

biomarkers. This work demonstrated that molecular

phenotyping using ClearCode34 has added value to pre-

dicting risk above standard clinical and pathologic variables

as well as standard ccRCC risk algorithms and may, thereby,

enhance patient-treatment planning.

TCGA cohort allowed testing of the prognostic value of

ClearCode34 in an independent data set, revealing that ccA

and ccB were significantly associated with multiple survival

end points, which was also observed in the UNC cohort

derived from FFPE tissues. We pooled TCGA and UNC

cohorts to build a risk predictive model that captures the

time period during which the majority of recurrences occur.

There remains a potential failure to capture late recur-

rences, but these tend to be uncommon and typically have a

more favorable outcome [17,18]. Multivariate analysis for

risk of tumor recurrence suggested that the risk prediction

model including subtype, stage, and Fuhrman grade

provided the best fit given the available variables.

Moreover, the model was shown to be a better predictor

for CSS than the UISS and SSIGN score, demonstrating the

proficiency of this molecular model over standard clinical

algorithms. Furthermore, performance status, a key com-

ponent of the UISS algorithm, is highly subjective, and rarely

reported in clinical records. In addition, necrosis is only

available upon gross examination and cannot be accurately

assessed on biopsy specimens. Although this study did not

examine biopsy specimens, we have observed that this

biomarker can be applied to biopsy tissue, which could be

used to provide essential presurgical risk information.

Based on a 2012 study exploring genetic heterogeneity [19],

we must be prepared to consider that primary tumors may

be genetically divergent from metastases, which may

present a challenge in developing tools for predicting the

behavior of metastatic disease.

The primary value of this proposed classification

system would be for clinicians caring for patients who

present with nonmetastatic tumors, seeking guidance

regarding postsurgical management, especially as adju-

vant therapy is emerging. Although surveillance guide-

lines exist following nephrectomy, the extent of

monitoring is applied in a variable fashion. The availabili-

ty of an integrated risk-prediction tool may allow

guideline refinement for more uniform patient manage-

ment. Stage and grade remain the most highly significant

predictors of risk, given the exceptionally low risk of

metastasis with T1a disease, and the exceptionally high

risk with T3b/T4 stage. However, it is important to risk

stratify patients with intermediate stage tumors, which

encompasses an enormous range of both local tumor

features and risk.

Gene expression-based tools are widely used in the

classification, risk assessment, and therapeutic selection of
diseases, such as breast cancers [14,20,21], and are

becoming standard for the classification of diffuse large

B-cell lymphoma [22] as well as colon cancer [23,24]. Other

expression-based systems have examined ccRCC and have

demonstrated patterns associated with risk [25]. Because

several individual transcripts had previously been associ-

ated with risk in ccRCC [1–6], we specifically incorporated

those features in our model and many were included in the

final ClearCode34 code set, validating their relevance in

ccRCC risk prediction. Future prospective studies, with large

cohorts of patients, will be needed to fully refine the

integrated prognostic algorithm.

5. Conclusions

This work presents a novel integration of molecular

profiling with standard clinical features to significantly

enhance prognostication in ccRCC, thus defining the subset

of patients at greatest risk for recurrence for risk-stratified

patient care.
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