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Several common oncogenic pathways have been implicated in the
emergence of renowned metabolic features in cancer, which in turn
are deemed essential for cancer proliferation and survival. However,
the extent to which different cancers coordinate their metabolism
to meet these requirements is largely unexplored. Here we show
that even in the heterogeneity of metabolic regulation a distinct
signature encompassed most cancers. On the other hand, clear cell
renal cell carcinoma (ccRCC) strongly deviated in terms of metabolic
gene expression changes, showing widespread down-regulation.
We observed a metabolic shift that associates differential regulation
of enzymes in one-carbon metabolism with high tumor stage and
poor clinical outcome. A significant yet limited set of metabolic
genes that explained the partial divergence of ccRCC metabolism
correlated with loss of von Hippel-Lindau tumor suppressor (VHL)
and a potential activation of signal transducer and activator of tran-
scription 1. Further network-dependent analyses revealed unique
defects in nucleotide, one-carbon, and glycerophospholipid metab-
olism at the transcript and protein level, which contrasts findings in
other tumors. Notably, this behavior is recapitulated by recurrent
loss of heterozygosity in multiple metabolic genes adjacent to VHL.
This study therefore shows how loss of heterozygosity, hallmarked
by VHL deletion in ccRCC, may uniquely shape tumor metabolism.
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There is now widespread consensus that diversion of metab-
olism is among the most distinguished cancer phenotypes,

and it is often postulated to characterize virtually all forms of
cancer (1, 2). Indeed, many common oncogenic signaling pathways
have been implicated in the emergence of specific metabolic
features in cancer cells that have been associated with both sur-
vival and sustained abnormal proliferation rate (2–5). However,
only a fraction of the metabolic reactions potentially occurring in
a generic human cell are typically involved in such processes. Only
recently a systemic study using transcriptional regulation has
attempted to rule out the possibility that other metabolic pro-
cesses in the network may achieve equal importance in cancer cells
(6), and the idea that all cancer cells display a unique metabolic
phenotype has spurred disputes that mainly highlighted a lack of
comprehensive evidence (7). Taken together, we contend that only
a systems perspective may help to elucidate the extent to which
different cancer cells coordinate their metabolic activity.
In this context, systems biology approaches have been dem-

onstrated to lead to the identification of altered metabolic pro-
cesses in disease development with regard to those disorders that
are driven or accompanied by metabolic reprogramming, in-
cluding cancer (8–11). To this end, the reconstruction of
genome-scale metabolic models (GEMs) is instrumental to knit
high-throughput data into the metabolic network topology.
Such integrative and network-dependent analysis enables pre-
diction of how systems-level perturbations are translated into
alterations in distinct and biologically meaningful modules and,
at the same time, elucidation of genotype–phenotype relation-
ships (12).

Results
Distinct Changes in Metabolic Gene and Protein Expression in Tumors.
Until recently (6, 13, 14) it has been largely overlooked (i) the
extent to which the metabolic phenotype is dissimilar with respect
to healthy cells, and (ii) the extent to which it affects the complete
metabolic network. We therefore used a GEM of the human cell
and integrated high-dimension datasets of omics data, from both
tumor-adjacent normal and cancer tissues. GEMs are models that
account for all known reactions and matched metabolites in a cell
and include the current knowledge for gene–protein reaction
associations for each reaction. Here we used the human metabolic
reaction (HMR) model, which comprises 7,943 reactions, 3,158
unique metabolites across eight compartments, and 3,674 genes
and represents the most comprehensive compilation of human
metabolic reactions (15). As for the omics data, we focused on
RNAseq gene expression profiles and immunohistochemical pro-
teomics. For cancer samples, we retrieved 539 transcriptomes and
25 proteomes, whereas for tumor-adjacent normal samples we re-
trieved 257 transcriptomes and 74 proteomes (SI Appendix, Table
S1 and Dataset S1). We focused to include gene products that
overlapped with the list of 3,674 genes in HMR. The HMR cov-
erage was 97% for the transcript profiles in all cancers and tumor-
adjacent normal samples. As for the protein profiles, because the
protein coverage was heterogeneous across the samples, the
HMR coverage was either 18% or 45%, depending on whether
both tumor-adjacent normal and cancer samples or only cancer
samples were pooled, respectively (SI Appendix, SI Materials and
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It is suggested that regulation of metabolism is a point of
convergence of many different cancer-associated pathways.
Here we challenged the validity of this assertion and verified
that a transversal metabolic signature in cancer emerges
chiefly in the regulation of nucleotide metabolism. However,
the most common form of renal cancer deviates from this be-
havior and presents some defects in its metabolic network not
present in the normal kidney and unseen in other tumors.
Notably, reduced copy number in key metabolic genes located
adjacent to VHL (a tumor suppressor gene frequently deleted
in this cancer) recapitulates these defects. These results are
suggestive that recurrent chromosomal loss of heterozygosity
in cancer may uniquely shape the metabolic network.
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Methods). Even if metabolic-related proteins had lesser cover-
age, they are fairly representative for most canonical metabolic
pathways (SI Appendix, Fig. S1).
The degree of similarity in metabolic gene expression between

cancer and tumor-adjacent normal samples was assessed using
principal component analysis (PCA) and mutual correlation-
based hierarchical clustering. First, the similarity in the abundance
of all metabolic transcripts across cancer and tumor-adjacent
normal samples was evaluated (SI Appendix, Figs. S2 and S3).
Both PCA and hierarchical clustering show that a group of
cancer samples displays a substantial deviation from the general
transcriptional pattern of most cancers. However, if these cancer
samples are neglected, PCA reveals a consistent transcriptional
response in different cancers opposed to tumor-adjacent normal
samples, which is independent of cancer type and remarkable
because the control samples were obtained adjacent to the tumor
(note that the first principal component was neglected because it
seems to account for few outliers; SI Appendix, Fig. S4). Con-
versely, hierarchical clustering shows a higher similarity in the
gene expression of tissue-specific samples rather than across all
cancer-labeled samples (SI Appendix, Fig. S3). This shows that
cancers undergo a considerable alteration in metabolic gene
expression profiles, but they also retain substantial similarity
with the regulation of metabolic gene products of their matched
tumor-adjacent normal tissue, in accordance with a recent study
(6). This led us to speculate that although cancer samples reg-
ulate only a subset of metabolic genes upon transformation and
preserve the expression of the remaining as in the tissue of ori-
gin, this regulation may be consistent and orchestrated across
different cancer types. To verify this, PCA and hierarchical clus-
tering were performed for those metabolic genes (∼20%) that
changed expression at statistical significance and across at least
four histological cancer types, thereby subtracting the effect of
tissue of origin (Fig. 1A and SI Appendix, Fig. S5 and Table S2).
In both analyses, the distinction between most cancer and tumor-

adjacent normal samples becomes apparent. In particular, hi-
erarchical clustering provides clear evidence for the fact that
most cancer samples modulate the expression of a distinct
group of metabolic transcripts in a similar fashion, regardless
of their histological classification. Next, multiple correspon-
dence analysis (MCA) was performed to check whether the
conclusions above also hold at the level of protein expression.
Accordingly, proteomics data confirm that the expression of
metabolic gene products is more similar between cancer samples
than to normal tissues, which are distinctly separated (SI Appendix,
Fig. S6A). However, within cancer samples no obvious cluster
emerged, perhaps owing to less coverage (SI Appendix, Fig. S6B).
Taken together, these analyses suggest that the transformation
entails a partial yet significant remodeling of metabolic regu-
lation, both at the transcript and protein level, which is trans-
versal and to some extent coordinated within the disease
phenotype and does not overlap with that of the tumor-adjacent
normal tissue.

Deviation of the Transcriptional Program in Clear Cell Renal Carcinoma
Metabolism. The above conclusion only holds provided that the
cluster of deviating samples is not taken into account. We ex-
plored the nature of this cluster by correlating samples with
available clinical data, and strikingly, all samples belonging to
this cluster share a common histological type [i.e., clear cell renal
cell carcinoma (ccRCC)] (SI Appendix, Figs. S2 and S3). Fur-
thermore, such an anomalous profile is not attributable to an
inherent elevated metabolic activity of the tissue of origin: when
PCA was performed on the reduced pool of metabolic genes that
significantly changed expression in most cancer types, ccRCC
samples still separated clearly (Fig. 1A and SI Appendix, Fig. S5).
Additionally, we noticed that papillary cell renal cell carcinoma
samples present in the previous analyses did not overlap in terms
of transcript abundance with ccRCC (SI Appendix, Fig. S7) and
did not correlate with the previously neglected first principal

A B

Fig. 1. Clustering analysis of metabolic gene expression profiles for cancer and tumor-adjacent normal samples. (A) Hierarchical clustering of absolute
metabolic gene expression levels (RPKM) for cancer and tumor-adjacent normal samples, featuring only those genes that significantly changed expression
across most cancer types upon transformation, thereby subtracting the effect of the tissue of origin. (Lower) Corresponding tissue of origin for each sample
in the heatmap above. (B) PCA of log2 metabolic gene expression fold-change vs. matched tumor-adjacent normal samples for ccRCC (gray) and other
cancer type samples (orange).
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component (SI Appendix, Fig. S8). The deviation of ccRCC
becomes even more evident when the metabolic gene expression
fold-changes (FC) replace the transcript abundance in the PCA,
which is suggestive of an opposite direction of regulation com-
pared with other cancer types (Fig. 1B). Given that ccRCC
samples present a lower and more variable tumor cellularity than
the other cancer types in this study (16, 17), we tested the hy-
pothesis that a higher stromal content may be responsible for the
apparent outstanding regulation of metabolic gene expression in
ccRCC. We inferred scores for tumor purity from gene expres-
sion profiles using ESTIMATE (17). These scores showed a
moderated increase of infiltrating cells in ccRCC samples com-
pared with others (SI Appendix, Fig. S9). However, when each
metabolic gene expression fold-change value was adjusted using
a simple linear regression on the stromal score for a given sample,
we still observed a distinct separation of ccRCC from the other
cancer types (SI Appendix, Fig. S10). These results suggest that
unique patterns of regulation are rewiring ccRCC metabolism,
which are markedly distinct from any other cancer in this study
and that are not utterly ascribable to the tissue of origin or to the
purity of the tumor. Indeed, the comprehensive molecular char-
acterization of ccRCC that produced the data used in this study
highlighted a considerable relationship between glycolytic metab-
olism and overall survival (16). However, the extent to which
a shift toward a “Warburg effect”-like state may inherently explain
the here-reported deviation of ccRCC metabolic regulation is
questionable. Indeed, aerobic glycolysis is a hallmark reported in
other different cancer types. Moreover, the number of regulated
genes involved in this metabolic process (∼40 as reported in ref.
16) is relatively low compared with the number of metabolic genes
that clustered ccRCC distant from the other cancer types. These
considerations hinted to us that other pathways may be strongly
and uniquely regulated in ccRCC. Therefore, we computed for
each cancer type the differential gene expression fold-changes
compared with tumor-adjacent matched normal samples. We found
that 2,539 metabolic genes are significantly regulated in ccRCC
vs. tumor-adjacent kidney (P < 0.05), of which 329 genes are
substantially up-regulated (log2FC ≥1) and 551 down-regulated
(log2FC ≤−1). This shows that there is a major disproportion
toward down-regulation of metabolic genes in ccRCC. To test
whether metabolic down-regulation is a common feature across
different cancer types upon transformation, the actual discrete
adjusted fold-change distribution in the population of ccRCC
samples was compared with the population of the remaining
cancer samples, and the former tend to have lower values (P <
10−15, Mann-Whitney U test; SI Appendix, Fig. S11). We also
observed that the adjustment for the stromal score corrects for
an overestimation in terms of down-regulation. Additionally, the
empirical cumulative distribution of adjusted fold-changes in
the population of ccRCC samples was compared with the pop-
ulation of the remaining cancer samples. Again, we confirmed
that there is a significant shift toward down-regulation in ccRCC
with respect to the other cancer samples (P < 10−15, Kolmogorov-
Smirnov test; SI Appendix, Fig. S12). On the other hand, when
the former test was repeated binning the remaining cancer sam-
ples according to their cancer type, endometrial cancer samples
also showed a similar tendency (SI Appendix, Fig. S13). Taken
together, these results are suggestive of widespread repression
of metabolic gene expression in ccRCC, which in part explains
the deviation observed above.

ccRCC Uniquely Regulates Nucleotide, Glycerolipid, and One-Carbon
Metabolism Compared with Any Other Cancer Type, the Latter Being
Implicated in Poor Prognosis. Next we sought to characterize the
impact of a ccRCC divergent transcriptional program on me-
tabolism as opposed to other cancer types. First, we checked in
each PCA whether we could identify a set of relevant loadings
responsible for the separation of ccRCC samples from the rest

(i.e., the metabolic transcripts with the highest eigenvalues in
each principal component—that is, highly associated with a sep-
aration on that component). However, neither in the PCA
clustering on transcript abundance (SI Appendix, Fig. S14) nor in
the PCA clustering on direction of gene expression regulation
(SI Appendix, Fig. S15) could a well-defined set of genes be
found. Therefore, we used network-dependent analyses to
identify how such a unique program of transcriptional regulation
diversely affected metabolism of ccRCC samples. For each of the
cancer types we identified reporter metabolites and pathways
(18) using our multiple gene-set analysis method (19) (Fig. 2
and SI Appendix, Fig. S16). As expected, in ccRCC diverse
areas of the metabolic network were either uniquely regulated
or not regulated compared with other cancer types, although
an ostensible heterogeneity can be viewed across all cancer types
(SI Appendix, SI Text). Among these, nucleotide metabolism and
alanine, aspartate, and glutamate metabolism, which were gen-
erally found up-regulated in most cancer types, were not signif-
icantly altered in ccRCC. On the other hand, the metabolism of
other amino acids (namely valine, leucine, isoleucine, cysteine,
methionine, glycine, serine, and threonine) was significantly down-
regulated only in ccRCC, as much as was the tricarboxylic acid
(TCA) cycle and enzymes that participate in the metabolism of
ubiquinone and ubiquinol (SI Appendix, Fig. S16), intermediates in
the electron transport chain (ETC). Finally, we report unique
changes in the metabolism of long-chain fatty acids and lactate
(SI Appendix, Figs. S17 and S18).
Moreover, we noticed that 1,504 genes that showed statis-

tical significance in patientwise expression fold-change across
all cancer vs. matched normal samples (P < 0.05, rank–product
test, Bonferroni correction) did not display any remarkable
change in expression level when averaging in the pool of ccRCC
samples. Unsupervised hierarchical clustering of patient-spe-
cific metabolic gene expression profiles featuring this set of
genes revealed two different clusters with opposite regulatory
directions (Fig. 3A). Interestingly, these clusters correlate with
patients’ tumor stage (P = 0.041, Pearson χ2 test; Fig. 3B).
Kaplan-Meier survival plots and log–rank tests were used to
assess the differences in overall survival, and accordingly, the
high tumor stage cluster is a predictor for poor prognosis (P =
0.012, log–rank test; Fig. 3C). Therefore, we sought to verify
whether an advanced tumor stage drives per se a different
transcriptional regulation of metabolism, as recently suggested
(16). To test this, 170 metabolic genes that have significantly
changed expression between high tumor stage (stage III to IV)
and low tumor stage (stage I to II) samples (P < 0.05, Wil-
coxon rank-sum test) were featured to cluster samples in
a supervised fashion. Contrary to the premises, the two clus-
ters that emerged from the analysis had a weaker association in
relation to the tumor stage (P = 0.1554; SI Appendix, Fig. S19)
but a comparable power to predict poor prognosis (P = 0.025)
(Fig. 3C). In both scenarios, the curves strikingly superimpose
with the survival plots based on the sole tumor stage in-
formation (high vs. low tumor stage; Fig. 3C), therefore sug-
gesting a metabolic gene expression profile that is shaped after
disease progression. To identify novel metabolic functions af-
fected by the differential program of metabolic regulation be-
tween the two clusters, we used the reporter metabolite
algorithm (18) (SI Appendix, Fig. S20). The analysis unveiled
some unreported changes (SI Appendix, SI Text). Among these,
we focused on dimethylglycine, a metabolite that belongs to
one-carbon metabolism. Dimethylglycine is synthesized from
betaine and subsequently converted into glycine (Fig. 3D).
Most enzyme-coding genes that are uniquely attributable to this
pathway display a significant difference in expression regulation
between the low and high tumor stage cluster, especially betaine–
homocysteine S-methyltransferase 1 (BHMT) and 2 (BHMT2)
whose expression reverse direction completely (SI Appendix,
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Fig. S21). These results suggest an unanticipated role for beta-
ine in ccRCC malignancy, which may parallel DNA hyper-
methylation frequency recently associated with an advanced

stage and grade of this tumor (16), given the established role of
betaine as a modulator of one-carbon metabolism and homo-
cysteine levels through BHMT (20).

Fig. 2. Reporter canonical metabolic pathways in each cancer type according to significant changes in metabolic gene expression vs. matched tumor-adjacent normal
tissues. Each box shows the log10 P value of the gene set representing a pathway in a certain cancer type, and the color indicates the overall direction of gene
expression regulation for the gene set (red, up; blue, down). BL, bladder urothelial carcinoma; BR, breast invasive carcinoma; HN, head and neck squamous cell
carcinoma; LUA, lung adenocarcinoma; LUS, lung squamous cell carcinoma; LI, liver hepatocellular Ccarcinoma; UC, uterine corpus endometrioid carcinoma.
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Upon Transformation, the ccRCC Metabolic Network Features
Widespread Loss of Function in Nucleotide, Glycerolipid, and One-
Carbon Metabolism, in Contrast to Any Other Tumors. Because
transcriptional regulation in ccRCC is suggestive of diffuse down-
regulation of key metabolic functions, we evaluated whether the
topology of its metabolic network reflected these premises. There-
fore, we generated a cancer cell type-specific GEM based on
protein evidence, using the INIT algorithm (21). Using the generic
human model HMR as a template, INIT reduces the network
according to proteomics evidence covering 15,156 proteins across
at least 10 renal carcinomas (>70% are clear cell). Of 15,156
protein-coding genes, 2,482 could be mapped to HMR, and the
reconstructed GEM, iRenalCancer1410, accounts for 3,913 re-
actions, 2,053 metabolites, and 1,410 genes, which means a re-
duction of 4,318 reactions (−53%) and 2,264 genes (−62%) from
the generic human metabolic model, mostly due to no or little
evidence for the encoded protein in most renal cancer samples
(SI Appendix, Fig. S22A). To assess which losses of metabolic
function are attributable to the transformation, we compared
iRenalCancer1410 with a published metabolic model of the kid-
ney cell in tubules (21), accounting for 4,812 reactions, 2,268

metabolites, and 2,240 genes (SI Appendix, Fig. S22B). The
comparison evidenced two interesting points. First, upon trans-
formation, the renal cancer metabolic network shrinks with
a reduction by approximately 20% of the number of reactions
and a reduction of more than 35% of the number of associated
genes, which clearly demonstrates a significant loss of metabolic
functions. Second, 852 metabolic genes that are present at the
protein level in the normal kidney cell are lost in the transformed
cell. These genes mainly belong to the metabolism of nucleotides,
glycerolipids, glycerophospholipids, glycosphingolipids, oxidative
phosphorylation, and inositol metabolism, among others (Fig.
4A). Conversely, 22 metabolic genes present only the renal cancer
network are associated with oxidoreductases in the endoplasmic
reticulum. To validate whether these metabolic perturbations oc-
curring during the transformation can be uniquely attributed to
renal cancer and therefore provide insights on the deviating pat-
tern of ccRCC metabolic regulation, we reconstructed cancer cell
type-specific metabolic models for four additional cancer types
(breast, lung, liver, and bladder) using the same procedure de-
scribed above. In line with the previous results that highlighted
a pronounced shift toward metabolic down-regulation in ccRCC

A D

B

C

Fig. 3. Metabolic gene expression profiles distinguish two cluster of differential regulation in ccRCC that implicate a role of one-carbon metabolism in the
malignancy. (A) Unsupervised hierarchical clustering of ccRCC log2 gene expression fold-changes vs. matched tumor-adjacent normal samples featuring the
set of 1,504 metabolic genes significantly different across all log2 gene expression fold-changes in cancer vs. matched tumor-adjacent normal samples. (B)
Clinical data for each ccRCC sample as ordered by the hierarchical clustering in A. Tumor stage ranges from stage 1 (white) to stage 4 (dark red); age is
represented by a gray-scale in which the lowest value is 38 y and highest 90 y; metastatic tumors are depicted in blue. (C) Kaplan-Meier survival curves for the
two clusters in A (solid line), for the two clusters in SI Appendix, Fig. S19 defined when featuring significantly changed genes between the pool of high
tumor stage and low tumor stage samples (short dashed line), and for the two groups of samples solely identified by a high or low tumor stage (long
dashed line). Blue and green lines refer to high and low tumor stage, respectively. (D) Gene expression regulation of enzymes involved in choline
degradation to glycine in the two clusters in A.
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compared with any other tumor, the metabolic network recon-
struction of iRenalCancer1410 resulted in a substantially smaller
model than in any of the other cancers. Moreover, the compari-
son of each of the four metabolic networks against iRenal-
Cancer1410 revealed that 169 metabolic genes were present in
all cancer models except for the renal cancer model, more than
for any other cancer (on average, 41 ± 28 metabolic genes are
lost in a model compared with the rest; Fig. 4A). Strikingly, 159
of these genes are also present in the normal kidney cell meta-
bolic network, therefore confirming that the above-observed
metabolic perturbations in ccRCC are unique. As a conse-
quence, key enzymes are missing in the metabolism of glyc-
erophospholipids, inositol, and one-carbon, as well as oxidative
phosphorylation (Fig. 4A and SI Appendix, Fig. S23). Additionally,
nucleotide metabolism is severely compromised, spanning both de

novo biosynthesis, which is generally up-regulated in cancer (6),
and successive degradation of nucleosides (Fig. 4B). In particu-
lar, we observe that absence of inosine 5′-monophosphate de-
hydrogenase 1 (IMPDH1) and 2 (IMPDH2), which commit IMP to
initiate guanosine synthesis; RRM1 and TXN, which catalyze the
synthesis of deoxyribonucleotides from the corresponding ribonu-
cleotides; NME/NM23 family member 5 (NME5), NME/NM23
nucleoside diphosphate kinase 4 (NME4) and 6 (NME6), which
are involved in nucleoside triphosphates biosynthesis from nucle-
oside diphosphates; and several enzymes in the 5′(3′)-deoxyribo-
nucleotidase family, which dephosphorylates different deoxyribo-
nucleotides. Taken together, a widespread repression of protein
expression clearly limits the redundancy of genes in key metabolic
pathways (most importantly nucleotide metabolism), a fact un-
detected in any other cancer type.

Divergence of ccRCC Metabolic Regulation Can Be Ascribed to Loss of
Heterozygosity in Key Metabolic Genes Adjacent to von Hippel-Lindau
Tumor Suppressor After Its Deletion. The divergence of ccRCC
metabolic regulation compared with any other tumor and
normal kidney is apparent both in the transcriptional regulation
and its metabolic network. On one hand, the analysis of tran-
scriptional regulation revealed that even though each type of
cancer in this study displayed a complex and heterogeneous
pattern of metabolic regulation in different pathways, ccRCC
features a unique tendency to generally down-regulate large
parts of metabolism. Only ccRCC strongly represses expression
of cysteine and methionine metabolism (part of one-carbon
metabolism), branched-amino acids metabolism, the metabo-
lism of glycine, serine, and threonine, the TCA cycle and the
ETC, as well as glycerolipid metabolism (with emphasis on fatty
acid elongation). Additionally, whereas most tumors up-
regulate nucleotide metabolism and the metabolism of alanine,
aspartate, and glutamate, ccRCC shows a mixed pattern of
regulation that results in both overexpressed and repressed
genes in these pathways. On the other hand, the analysis of the
metabolic network uncovered that ccRCC relies on a relatively
small network, which features loss of gene redundancy in key
metabolic pathways (e.g., oxidative phosphorylation and
nucleotide, inositol, one-carbon, and glycerolipid metabolism)
otherwise unaffected in any other cancer or in the normal
kidney. Therefore, we sought to characterize the possible cau-
ses underlying the above-described metabolic features that
render ccRCC different from all of the other cancer types
upon transformation (Fig. 5).
First we considered the genetic background of ccRCC. Spo-

radic ccRCC (which represents 75% of all renal carcinomas) is
generally characterized by mutations in the VHL tumor sup-
pressor gene (16, 22). Deletion of Von Hippel-Lindau tumor
suppressor (VHL) results in the stabilization of the hypoxia-in-
ducible transcription factor (HIF) under normoxic conditions and
thus entails a profound rewiring of mammalian oxygen-sensing
pathways (23). Therefore, we tested the hypothesis that loss of
VHL is one of the possible causes for the unique metabolic repro-
gramming of ccRCC. First, copy number variants (CNVs) for 62
ccRCC samples used in the PCA were checked in the region of
VHL, and in 90% (56 of 62) of the samples the VHL gene locus
was found consistently deleted, as opposed to matched tumor-
adjacent normal samples (SI Appendix, Fig. S24). In addition, 52%
of these samples (32 of 62) harbored a VHLmutation that mostly
results in the deactivation of the corresponding protein (SI
Appendix, Fig. S24). Second, the metabolic gene expression
changes for each examined cancer type vs. matched normal tis-
sues were correlated with an analogous comparison between two
isogenic ccRCC cell lines (786-O), in which one of the cell lines
is a VHL mutant with a frameshift deletion, whereas the second
had VHL reintroduced (24). By comparing the VHL-deficient
cell line against the VHL-reintroduced cell line, 1,339 genes were

A

B

Fig. 4. Reconstruction and comparison of ccRCC-specific GEM (iRenal-
Cancer1410) against other cancer-type GEMs and the normal kidney cell
in tubules GEM. (A) Venn diagram for the metabolic genes present in
iRenalCancer1410 compared with other reconstructed GEMs (cancers, Left,
kidney cell in tubules, Right). Metabolic genes absent in iRenalCancer1410
but present both in the kidney cell in tubules GEM and other cancer type
GEMs were used to enrich canonical pathways. (B) Nucleotide metabolism
featuring the staining level of proteins taken from HPA for different tissues
(Center: ccRCC; Left: BR, breast cancer; BL, bladder cancer; LI, liver cancer; LU,
lung cancer; Right: NK, kidney cell in tubules).
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found significantly regulated, of which 290 are metabolic (P < 0.05,
119 up-regulated, 171 down-regulated). Among all of the cancer
types analyzed, only the direction changes in metabolic gene ex-
pression coming from ccRCC samples correlated with the above
pattern of transcriptional regulation (P < 0.05; SI Appendix, Fig.
S25). The correlation is even stronger when a more stringent
significance level is used (P < 0.01; SI Appendix, Fig. S26). Despite
the limited number of genes differentially regulated in the VHL-
deficient cell line, the amount of metabolic genes coregulated with
ccRCC (228) was found to be overrepresented (P < 10−4, Fisher’s
exact test), in particular the up-regulated ones (P < 10−4; SI
Appendix, Fig. S27). Such genes are not exclusively ascribable
to kidney or renal carcinoma, as revealed by functional clustering
based on tissue expression data (SI Appendix, Table S3). These
results were successfully replicated using an analogous yet in-
dependent dataset (25) (SI Appendix, Fig. S25). The analysis of
these data indicates that in ccRCC VHL loss is indeed associated
with the regulation of a significant portion of metabolic genes,
whereas such association could not be recapitulated in any other
cancer type. We therefore explored the metabolic functions af-
fected by expression changes in the 228 genes regulated by loss of
VHL that are associated with ccRCC. To this end, reporter path-
ways were computed as described above. Only three pathways
were shown to be significantly regulated in a consistent direction
by this set of genes, namely alanine, aspartate, and glutamate me-
tabolism, valine, leucine, and isoleucine metabolism, and fatty acid
elongation (SI Appendix, Fig. S28). In all three cases, gene ex-
pression was shifted toward down-regulation. Therefore, loss of
VHL alone may explain why these pathways are repressed or mixed
regulated only in ccRCC and not in the other tumors (Fig. 2 and
SI Appendix, Fig. S16). Given VHL involvement in oxygen sensing,
we also tested whether pseudohypoxia induced by VHL inactiva-
tion may drive per se a divergent transcriptional response with
respect to environmental hypoxia seen in most tumors and the
normal kidney (26, 27), but no such correlation could be found
(SI Appendix, SI Text and Fig. S29).
Apart from VHL loss-mediated stabilization of HIF, other

transcription factors may be triggered only in ccRCC, thus shed-
ding light on the other differentially regulated metabolic func-
tions. Hence, metabolic gene expression changes were used in
our multiple gene-set analysis method to identify reporter tran-
scription factors in each cancer type (SI Appendix, SI Text and
Fig. S30). Notably, signal transducer and activator of transcrip-
tion 1 (STAT1), an anticarcinogenic transcription factor (28), is
deemed associated only to ccRCC as it regulates many of the up-
regulated metabolic genes. Indeed, the STAT1 gene set com-
prises 4,381 genes, and 264 of them are metabolic genes that
were significantly overexpressed in ccRCC (P < 0.01). Surpris-
ingly, these genes were found to relate to inositol and nucleotide
metabolism, among others (SI Appendix, Table S4), even though
the above analysis of the ccRCC metabolic network rather sug-
gested that these pathways were compromised. However, a detailed
review unveiled that these metabolic genes are complementary to

the ones found not expressed at the protein level in ccRCC. For
instance, the nucleotide metabolism-related genes, namely NME1,
NME1-NME2, NME2, and PKM2, are all part of ccRCC metabolic
network and compensate the lack of expression of NME4, NME5,
and NME6 at the protein level (Fig. 4B). The same can be con-
cluded for inositol metabolism, in which induction of PIK3C2B,
PIK3R3, and PIK3CD contrasts with low to null expression of
PI4KB, PI4K2A, and PI4K2B (SI Appendix, Fig. S23). Therefore, if
STAT1 was indeed activated in ccRCC, then together with VHL
loss it can explain most of the metabolic features that distinguished
ccRCC from any other cancer in this study.
The mechanisms for other features unique to ccRCC, such as

loss of gene redundancy in nucleotide and glycerolipid me-
tabolism as well as down-regulation of one-carbon metabolism,
still remained unsettled. Although this may be seen as part of
a general shift toward down-regulation that has related to mul-
tistep cancer transformation and suggestive of dedifferentiation
(29), we had previously ruled out a compelling role of the tissue
of origin in ccRCC metabolic reprogramming (Fig. 1A and SI
Appendix, Fig. S5). We therefore sought to identify whether
other genetic alterations may be implicated. Thus we analyzed
488 ccRCC samples and as many matched normal samples for
which CNVs were scanned using Affymetrix Genome-Wide SNP
Array 6.0 (SI Appendix, Dataset S2). We restricted our analysis
to those gene loci that overlap with the metabolic genes in HMR
and that displayed appreciable mean segment amplitude with
respect to the baseline (>±0.15) across at least 50% of the sam-
ples. Furthermore, all mean segments amplitudes that were not
found to be statistically different in the pool of ccRCC samples
against tumor-adjacent normal samples were discarded (P < 0.01,
Wilcoxon rank–sum test). In total, 108 metabolic genes were
deemed to be recurrently deleted (107) or amplified (1) in ccRCC
(SI Appendix, Fig. S31). Transcript and protein abundance for
each of these genes were checked in ccRCC against tumor-adjacent
normal samples, and 14 genes displayed a consistent trend with
the presumptive CNV (SI Appendix, Fig. S32 and Table S5).
Among these, abhydrolase domain containing 5 (ABDH5), choline
dehydrogenase (CHDH), glycerol-3-phosphate dehydrogenase
1-like (GPD1L), IMPDH2, and pyruvate dehydrogenase beta
(PDHB) are located within 3p14.3 and 3p22.3, a region that display
significant decrease in gene copy number in the range of 75–81%
of samples (Table 1). Reduced copy number for all these meta-
bolic genes may share the same mechanism that induces early loss
of VHL in ccRCC, being VHL located at 3p25.3. Only PDHB is
known to be indirectly inhibited after VHL loss, via HIF-dependent
expression of PDHK1, a PDH complex inhibitor (30). Remark-
ably, these deletions explain many defects previously unveiled in
ccRCC metabolic regulation: ABHD5 and GPD1L are involved
in glycerophospholipid metabolism; CHDH is implicated in one-
carbon metabolism; PDHB commits pyruvate in the TCA cycle;
and IMPDH2 is a key step in purine biosynthesis. Taken together,
these results are suggestive of a multistep model for ccRCC
metabolic reprogramming (Fig. 5): first, VHL loss in ccRCC ini-

Table 1. Potentially deleted genes according to copy number (CNV), transcript level (abundance [reads per kilobase per million reads
(RPKM)] and regulation [log2FC]), and median protein staining level in malignant and healthy renal tissue

Gene
Gene
locus

Mean CNV
amplitude

CNV
frequency (%) RPKM log2FC

Median staining
renal cancers

Staining kidney
cells in tubules Enzymatic activity

ABHD5 3p21.31 −0.236 81.15 2.69 −0.94 Negative Moderate 1-acylglycerol-3-phosphate
O-acyltransferase

CHDH 3p21.1 −0.227 78.28 9.54 −1.05 Negative Strong Choline dehydrogenase
GPD1L 3p22.3 −0.234 80.94 4.96 −0.83 Negative Moderate Glycerol-3-phosphate

dehydrogenase
IMPDH2 3p21.31 −0.236 81.15 8.19 −0.68 Negative Moderate IMP dehydrogenase
PDHB 3p14.3 −0.216 74.80 4.35 −1.30 Negative Strong Pyruvate dehydrogenase
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tiates an extensive transcriptional program that also represses pe-
ripheral metabolism (e.g., branched-chain amino acids metabolism);
then, recurrent loss of heterozygosity in 3p affects several adjacent
metabolic genes that implicate reduced redundancy in the ccRCC
metabolic network (e.g., impaired purine biosynthesis); finally,
transition to malignancy and a possible activation of STAT1 may
contribute to trigger adaptive mechanisms (e.g., regulation of one-
carbon and nucleotide metabolism).

Discussion
The increasing body of evidence that the same deregulated sig-
naling pathways that lead to the typical malignancy of cancer
cells converge in the regulation of cell metabolism has lately
gained attention for the possible implications in cancer therapy
(31). Moreover, this fact propelled the idea that oncogene-directed
metabolic reprogramming is a strict condition to support anabolic
growth and meet the metabolic requirements for proliferation in

any cancer cell (2, 5). However, the degree to which regulation of
such reprogramming is equated across different cancer cells at
the systems level has been largely overlooked. In this study, and
in remarkable concordance with the work by Hu et al. (6),
a systems analysis of the metabolic network revealed that cancer
cells orchestrate the expression of metabolic genes in a similar
fashion only when it comes to nucleotide, glutamate, and retinol
metabolism, while retaining the expression of a substantial por-
tion of metabolic genes unaltered with respect to their tissue of
origin. As a proof of concept, it has been recently appreciated that
sustained growth signaling via mTORC1, a pathway constitutively
active in most human cancers, directly controls de novo pyrimi-
dine biosynthetic flux (32, 33).
The fact that ccRCC has a radically different metabolic reg-

ulatory program at the systems level may therefore be important
not only for the rational design of therapeutic targets against this
particular neoplasm, but also to understand cancer metabolism

Fig. 5. An overview of the metabolic features unique to ccRCC in the landscape of cancer metabolic regulation. The figure shows reporter pathways
(represented by edges; refer to Fig. 2) and metabolites (represented by nodes; refer to SI Appendix, Fig. S16) transcriptionally regulated only in ccRCC vs.
matched tumor-adjacent normal tissue; and subnetworks (represented by rectangles) that feature lack of gene redundancy only in ccRCC metabolic network
(refer to Fig. 4A). The mechanisms that contribute to this metabolic phenotype are summarized. First, loss of VHL represses expression of metabolic genes in
alanine, aspartate, glutamate, and branched-chain amino acids metabolism. Second, potential activation of STAT1 up-regulates redundant genes in nucle-
otide biosynthesis and inositol metabolism. Third, loss of heterozygosity in metabolic genes adjacent to VHL affects several pathways previously identified as
down-regulated or deficient only in ccRCC (represented by double bar).
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in general. Recently a comprehensive characterization of ccRCC
unveiled an exceptional regulation of central carbon metabolism,
associated with altered promoter methylation patterns and
mutations in the PI(3)K/AKT pathway (16). Here we report
that peripheral regions of metabolism (e.g., nucleotide, one-
carbon, amino acid, and glycerolipid metabolism) are also
uniquely affected in ccRCC, and we provide evidence that this
divergence of ccRCC metabolic regulation can be ascribed to
recurrent loss of heterozygosity. Indeed, in line with the idea
that oncogenic pathways are implicated in the regulation of
cancer metabolism, we show that loss of VHL in the 3p chro-
mosome drives an initial reprogramming that matched exclu-
sively in the case of ccRCC. Accordingly, a recent study that
reconstructed a single tumor genetic phylogeny confirmed that
VHL deletion is the earliest event in ccRCC cancerogenesis (34).
Such reprogramming entails down-regulation of branched-chain
amino acid metabolism, fatty acid elongation, and alanine, as-
partate, and glutamate metabolism, the latter otherwise generally
up-regulated in most cancers. Thereafter, loss of heterozygosity in
key metabolic genes adjacent to VHL compromise nucleotide,
one-carbon, and inositol metabolism and glycerolipid biosynthesis.
In support of our conclusion, a study specifically aiming to map
deletions on 3p besides VHL in ccRCC tissue samples revealed
extensive loss of heterozygosity in gene loci within the chromo-
some, with remarkably higher frequency at a late tumor stage (35).
Such events therefore imply in ccRCC loss of gene redundancy in
a metabolic pathway, namely nucleotide metabolism, which is the
most frequently overexpressed in cancer (6). As such, considering
its essential role for cancer proliferation, such a finding paves the
way for potential synthetic lethality strategies. Intriguingly, ccRCC
cells seem to adapt to its defective network by up-regulating al-
ternative pathways, as in the case of betaine, where we find that
this adaptation may turn critical for the aggressiveness of the
disease. In addition, a potential activation of STAT1 transcription
factor was associated only with ccRCC. Such activation would
trigger up-regulation of complementary genes in nucleotide and
inositol metabolism, explaining the mixed regulation of the former
in ccRCC. Although STAT1 activation requires experimental
validation, this event may be linked to immune response (28) or to
treatment with interferon-α (36). Finally, we considered environ-
mental hypoxia and kidney cell dedifferentation as other potential
factors that may contribute to a different metabolic reprogram-
ming in ccRCC, but no compelling role could be demonstrated in
either case. In conclusion, there is evidence that ccRCC metabolic
regulation is uniquely shaped upon loss of heterozygosity in the 3p
chromosome, where VHL, the tumor suppressor gene most com-
monly associated to ccRCC, is located.
Finally, Hu et al. (6) reported that in the few cases in which

nucleotide biosynthesis was not up-regulated in cancer, the
overall metabolic gene expression was most down-regulated or
not changed. Indeed, here we found that ccRCC displays a sig-
nificant shift toward metabolic down-regulation, which translated
in the smallest metabolic network, and features a compromised
nucleotide metabolism. We therefore addressed this discrepancy
in ccRCC and propose that loss of heterozygosity may be in-
strumental in shaping the metabolic topology of these cancer
cells. As such, we also believe that these results reinforce the idea

that among all other cancers nucleotide biosynthesis is a crucially
altered pathway marked with increased activity.

Materials and Methods
Data. RNAseq profiles for primary tumor and matched tumor-adjacent nor-
mal tissues were obtained at The Cancer Genome Atlas (TCGA, tcga-data.nci.
nih.gov). Immunohistochemical protein profiles were retrieved at the Human
Protein Atlas (HPA version 11, www.proteinatlas.org). GEMs for a generic hu-
man cell (HMR3674, shortly HMR) and the kidney cell in tubules were down-
loaded from the Human Metabolic Atlas (www.metabolicatlas.com). Detailed
information is given in SI Appendix, SI Materials and Methods.

Cluster Analysis. PCA and hierarchical clustering (Pearson correlation metric,
average linkage), were performed on the basis of metabolic transcript
abundance profiles [measured in reads per kilobase per million reads (RPKM)]
or log2 metabolic gene expression fold-change against matched tumor-ad-
jacent normal samples focusing only on those genes included in HMR. MCA
was based on four categorical staining levels (strong, moderate, weak, and
negative) for metabolic gene encoded proteins. Detailed information is given
in SI Appendix, SI Materials and Methods.

Gene-Set Analysis.Multiple gene-set analyses were implemented using PIANO
R-package (19), and each gene set was defined as either the set of genes
constituting a pathway in HMR (reporter pathway), or as the set of genes
that encode for all reactions involving a certain metabolite in HMR (reporter
metabolites), or as the set of genes for which a peak was detected in any
ChIP-seq experiment, as collected in Cscan (37), targeting a certain tran-
scription factor (reporter transcription factors). For each directionality class
(up-, down-, or mixed regulated), the statistical significance returned is the
median significance reported by eight gene-set analysis methods. Then, the
most significant directionality class is reported. Detailed information is given
in SI Appendix, SI Materials and Methods.

Statistical Analysis. Details on the statistical tests reported in the text are
available in SI Appendix, SI Materials and Methods. For gene expression
differential analysis, cancer type-wise statistics were computed from empiri-
cal Bayes estimation and generalized linear models to fit a negative binomial
distribution on the read counts; patient-wise statistics were computed using
the rank–product test adjusted using the Bonferroni correction. Detailed in-
formation is given in SI Appendix, SI Materials and Methods.

Cancer GEMs Reconstruction. The reconstruction of cancer type-specific GEMs
was performed for breast, bladder, liver, lung, and renal cancer using the INIT
algorithm (21) within the RAVEN Toolbox (38). Scoring for evidence of
a reaction to be occurring was based on HPA protein profiles for each cancer
type. INIT reconstructs a GEM by maximizing the reaction score while pre-
serving network connectivity and functionality (i.e., the resulting GEM must
be able to perform a list of metabolic tasks, including biomass growth).
Detailed information is given in SI Appendix, SI Materials and Methods. All
cancer models are available through www.metabolicatlas.com.

CNV Analysis. SNP arrays for CNV analyses were obtained at TCGA for ccRCC
and matched tumor-adjacent normal samples, and segment amplitude across
each chromosome was calculated using the GADA R-package (39). Detailed
information is given in SI Appendix, SI Materials and Methods.
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